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Abstract

This paper examines a property of twists and wrenches that leads to a restriction
in the choice of basis vectors in a twist/wrench representation of motion and force
vectors. Given any non-zero twistt (or wrenchw), it is possible to identify wrenches
w (or twistst) having the same screw axis ast (or w). This kind of relationship is
inherent in the definition of twists and wrenches, and should therefore be regarded as
an invariant property; but it is not invariant with respect to a general change of basis,
so it becomes necessary to restrict the choice of bases to a set that does preserve the
invariance of this property. A similar problem arises with motors.

This paper goes on to argue that the restricted choice of bases is a practical dis-
advantage on the grounds that it hinders the analysis of freedoms and constraints, and
reduces the number of analytical techniques that can be used.

1 Introduction

In screw theory, a twist is a vectorial quantity that describes the infinitesimal motion of
a rigid body. Likewise, a wrench is a vectorial quantity that describes the resultant of a
system of forces acting on a rigid body. Both are defined in terms of a magnitude and
a screw axis. A twist is defined as a displacement of a specific (infinitesimal) amplitude
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about a specific screw axis, and similarly for a wrench. A screw axis is, in turn, defined as
a directed line in 3-D space together with a scalar that specifies its pitch [1].

The screw axis is therefore a property that is common to both twists and wrenches; so
it is possible to define a relation between twist space and wrench space along the following
lines: given any nonzero twistt (or wrenchw), it is possible to identify an infinite number
of wrenchesw (or twistst), all of which have the same screw axis as the given twistt (or
wrenchw). Furthermore, the screw axis is an intrinsic property of twists and wrenches, so
this common-screw relation should be invariant with respect to the choice of basis vectors
in a coordinate-based representation.

If we wish to represent twists and wrenches by means of coordinate vectors, then we
must choose a representation where their invariant properties are preserved under any al-
lowable change of basis. Unfortunately, the common-screw relation is not invariant with
respect to every possible change of basis, so it becomes necessary to limit the choices to a
subset within which the invariant properties are preserved.

A similar problem arises in the motor calculus, where twists and wrenches are all ex-
pressed using motors [9]. In this case, there is an invariant common-motor relation between
twists and wrenches, which subsumes the common-screw relation.

On the other hand, there is no such problem in a dual-space representation of motions
and forces, where the two types of vector are kept in two dual, but otherwise completely
unrelated, vector spaces. In this representation, only the invariance of the scalar product
must be preserved.

This paper investigates the invariance problem caused by the presence of the common-
screw and common-motor relations. It shows that the most commonly-used systems of
coordinates do indeed preserve the relevant invariants; but it also shows that there are many
simple changes of basis that do not, including simple scalings and reflections.

This paper goes on to argue that the restricted choice of basis vectors is a genuine
practical disadvantage, despite the fact that the most commonly-used choices are all in the
allowed set, because the set is too small to support a new analytical tool that simplifies the
analysis of freedoms and constraints by means of a general change of basis [6]. The analyst
who chooses the twist/wrench or motor representations must do without this tool.

The rest of this paper is organized as follows. First, the dual-space representation is
described, along with the coordinate transformation rules that preserve the invariance of
the scalar product. The next two sections explore the problem of preserving the invari-
ance of the common-motor and common-screw relations while simultaneously preserving
the invariance of the scalar product. The investigations are carried out by simulating the
relevant properties of the motor and twist/wrench representations within the dual-space rep-
resentation. The final section examines the consequences, and puts the argument in favour
of preferring the dual-space representation for analysing the dynamics and kinestatics of
rigid-body systems.
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2 The Dual-Space Representation

LetMn andFn be twon-dimensional vector spaces with the property that a scalar product
is defined between them. Ifm 2 M

n andf 2 F
n then the scalar product may be written

eitherm � f or f �m, both meaning the same thing. Neither space has an inner product, so
the expressionsm �m andf � f are not defined. Together, the two spaces and the scalar
product define a dual-system of vector spaces, denotedhM

n; Fn; �i.
In the dual-space representation,Mn contains motion-type vectors andFn contains

force-type vectors. Examples of motion-type vectors include velocities, accelerations, in-
finitesimal displacements and joint motion axes. Examples of force-type vectors include
forces, momenta and contact normals. Although we will be concerned mainly with vectors
describing the motions of, and forces acting upon, a single rigid body, the elements ofM

n

andFn are not tied to any particular physical interpretation. They could just as easily be
vectors of generalized motions and forces for a complex multibody system. The only im-
portant property is that a scalar product be defined between them, such that its value can
be interpreted as the work (power, etc.) done by a force acting over a small displacement
(velocity, etc.).

In this paper,Mn andFn are each used as umbrella terms for a collection of spaces
that are formally distinct, but mathematically equivalent. For example, a statement like
v; a 2 Mn, wherev is a velocity vector anda is an acceleration, is intended as a short-hand
notation forv 2 M

n
v , a 2 Mn

a , whereMn
v andMn

a are spaces of velocity and acceleration
vectors, respectively. Clearly, it is not possible forv anda to be literally members of the
same space, since they have different physical units andv+a is a meaningless expression;
but the topic of discussion is the mathematical properties of various spaces, andM

n
v andMn

a

do have identical properties, so it is pointless to distinguish between them in the present
context.

Starting withhMn; Fn; �i, let us define a basisD = fd1; : : : ;dng onMn and a basis
E = fe1; : : : ; eng onFn. If mD andfE aren � 1 coordinate-vector representations ofm

andf in D andE then

mD =

2
664
m1

...
mn

3
775 such that m =

nX
i=1

mi di ;

and similarly forfE. The scalar product is given by

m � f =m
T
DPDE fE ;

where

PDE =

2
664
d1 � e1 � � � d1 � en

...
...

dn � e1 � � � dn � en

3
775 :
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(One of the defining properties of a dual system that wasn’t mentioned earlier is that the
scalar product must be such thatPDE is always nonsingular.)

As there are always two bases involved, it is convenient to introduce the idea of abasis
pair, which is nothing more than a pair of bases, one on each vector space. If we say that
A is a basis pair onhMn; Fn; �i then we are simply saying thatA is an entity comprising
two bases, one onMn and one onFn. We may call themAM andAF, respectively. The
introduction of basis pairs allows us the following notational convenience: for anym 2

M
n, f 2 F

n and basis pairA on hMn; Fn; �i, mA is the coordinate representation ofm in
AM andfA is the coordinate representation off in AF.

A basis pair can be defined simply by listing its constituents. For example, we may
defineA byA = (D;E), in which caseAM = D, AF = E, mA = mD andfA = fE. We
may also say thatPDE = PA.

For any given choice ofD, there is a unique basisE for which PDE is the identity
matrix. Let us call this basisRecip(D). The two basesD andRecip(D) are said to be
reciprocal, and together they constitute areciprocal basis pair. If A is any reciprocal basis
pair onhMn; Fn; �i thenPA is the identity matrix, and

m � f =m
T
A fA :

The term ‘reciprocal’ is used here with a different meaning to the one it has in screw
theory. In particular, reciprocity in screw theory is a relationship between two objects of
the same type (two screws), but in the dual-space representation it is a relationship between
objects of different type. This means that screw-theory concepts like self-reciprocity have
no counterpart in the dual-space representation.

The reciprocal basis pair is the dual-space equivalent of an orthonormal basis in a Eu-
clidean space: they both allow a scalar productv � w to be written asvT w. However,
there aren2 freedoms available to choose a reciprocal basis pair onhM

n; Fn; �i, but only
n(n � 1)=2 freedoms to choose an orthonormal basis on Euclideann-space. Differences
like this help to illustrate that a dual system of vector spaces really is profoundly different
from an inner-product space.

From here on, we restrict our choice of bases to reciprocal basis pairs only. This re-
striction guarantees the invariance of the scalar product, both in form and in value.

Let us now examine the rules governing a change of basis inhM
n; Fn; �i. LetmA, fA,

mB andfB be representations of the two vectorsm 2 M
n andf 2 F

n, expressed in the
reciprocal basis pairsA andB respectively. The formulas for performing a change of basis
are:

mB = XmmA; fB = Xf fA;

mA = X
�1

m mB; fA = X
�1

f fB;

whereXm is a coordinate transformation matrix that performs the change of basis inM
n,

andXf does the same inFn. To preserve the invariance of the scalar product,Xm andXf
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must satisfy the equationmT
A fA =m

T
B fB for all A andB, hence

X
T
m � X

�1

f :

There is much more to be said about the dual-space representation, but the above is
sufficient for the argument in this paper. More details can be found in [6].

Before moving on, let us examine two existing concepts that closely resemble the dual-
space representation, but which actually behave like the motor representation with respect
to the invariance properties under investigation.

The first is the idea of a dual system of coordinates: a single vector space is endowed
with two types of coordinate system; typically, one is labelled covariant and the other
contravariant, and the underlying bases are reciprocal to each other. A good example is
the use of Pl¨ucker axis and ray coordinates to represent twists and wrenches, respectively,
as done in [8, 10]. However, despite the segregation of twists and wrenches by coordinate
system, there is still only a single underlying vector space; so twists and wrenches must
ultimately be members of the same vector space, just as they are in the motor representation.

The second is the spatial algebra described in [4]. This algebra maintains a distinction
between motion-type and force-type vectors that is sufficient to qualify it as a two-space
representation; but the two spaces are deliberately designed to obey the same transforma-
tion rules under a change of basis, so that the two spaces can be treated as a single space for
the purpose of defining transformation matrices, etc. For this reason, the relevant invari-
ance properties of spatial algebra are the same as those of the motor representation. There
is now a new version of spatial algebra, described briefly in the appendix of [5], which is
based explicitly on the dual-space representation.

3 Invariance in the Motor Representation

This section investigates the restrictions that must be placed on the choice of bases when
motion and force vectors are represented using motors.

Motors can be defined in various different ways, and can be regarded as geometrical
objects in much the same way as screws. One convenient definition is to say that motors
are screws with magnitudes. They are therefore six-parameter entities that are characterized
by two numbers (magnitude and pitch) and a directed line in space. It can be shown that
motors behave like vectors, and that the set of motors forms a vector space.

Motors can be given two different mathematical structures: a 6-D vector space over the
real numbers [9], and a 3-D module over the ring of dual numbers [2]. We shall use the
former, but similar results could be obtained using the latter.

For our purposes, the single most important property of the motor representation is that
the same set of motors is used to represent both twists and wrenches. Since every twist can
be represented by a motor, and each motor uniquely represents a single twist, the motor
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representation of twists involves a1 : 1 mapping between motors and twists. Similarly, the
motor representation of wrenches involves a1 : 1 mapping between motors and wrenches.

These two mappings imply a1 : 1 relation between twists and wrenches: the common-
motor relation. This relation is more specific than the common-screw relation, and sub-
sumes it in the sense that a common motor automatically implies a common screw axis. It
can be shown that the common-motor relation is linear.

The common-motor relation is a consequence of the act of representing twists and
wrenches using motors. It can be defined in various geometrical ways that do not involve
coordinates; so it should be regarded as an invariant relation within the motor representa-
tion.

To investigate the effect of the common-motor relation, let us model the motor repre-
sentation by means of the dual systemhM6; F6; �i and the linear mapping� : F6 7! M

6,
whereM6 is twist space,F6 is wrench space, ‘�’ evaluates to the scalar product of two mo-
tors, and� maps each wrench to the twist represented by the same motor.� itself is a
nonsingular6� 6 matrix.

LetmA, mB, fA andfB be coordinate vectors representingm 2 M
6 andf 2 F6 in the

reciprocal basis pairsA andB. Reciprocal basis pairs automatically preserve the invariance
of the scalar product, so we can concentrate on finding the conditions under which� is
invariant. For a change of basis fromA toB, the invariance condition is that

mA = �fA ) mB =�fB :

This can only be true if
� = Xm�X

T
m ; (1)

whereXm is the coordinate transformation matrix fromAM toBM. If there are no restric-
tions on the choice ofA andB thenXm is a general nonsingular matrix, in which case
the only solution to Eq. 1 is� = 0; but this is inconsistent with the definition of�. The
conclusion we can draw is that it is impossible to preserve the invariance of any nonzero
mapping without imposing some restrictions on the choice of bases. (This is a general
result, not just a special property of motors.)

Given that the choice of bases must be restricted, let us now examine some specific sets
of bases and the special forms that� must take in order to be invariant within these sets.

Let us begin with a reciprocal basis pair comprising three unit rotations, three unit trans-
lations, three unit forces and three unit couples, all arranged along, about, or parallel to (as
appropriate) thex, y andz axes of a right-handed Cartesian coordinate frame. The coor-
dinate systems pertaining to this basis pair are known as Pl¨ucker ray and axis coordinates,
and they are the two most commonly used coordinate systems for representing motors.

A basis pair that is defined in terms of a Cartesian coordinate frame, as above, is com-
pletely specified by the position and orientation of that frame. If we fix the position of the
origin, but allow the frame to rotate freely about its origin, then we obtain a three-parameter
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set of reciprocal basis pairs with the property that the general form ofXm for any change
of basis within the set is

Xm =

"
E 0

0 E

#
;

whereE is a general3 � 3 rotation matrix. WithXm restricted to this form, the most
general solution to Eq. 1 is

� =

"
�1 1 �2 1

�3 1 �4 1

#
;

where�i are any four scalars satisfying�1 �4 6= �2 �3, and1 is a3� 3 identity matrix.
If we enlarge the set by allowing the frame to translate as well as rotate, then the general

form ofXm is

Xm =

"
E 0

ES E

#
;

whereS is a skew-symmetric matrix, and the general solution to Eq. 1 becomes

� = �1

"
0 1

1 0

#
+ �2

"
0 0

0 1

#
; (2)

where�1 6= 0.
Now let us consider some transforms that do not work. One obvious example is uniform

scaling, for which the only solution is� = 0. Most non-uniform scalings produce the
same result. On the other hand, reflections and some special scalings do admit nonsingular
solutions, but not necessarily in combination with other types of transform. For example,
the general form of a reflection through thex–y, y–z or z–x plane for a Pl¨ucker-coordinate
basis pair is

Xm =

"
D 0

0 �D

#
;

whereD is a diagonal matrix with any permutation of(1;�1;�1) on the main diagonal. If
we want� to be invariant with respect to reflections in addition to general translations and
rotations of the Cartesian frame, then we must find out which values of�1 and�2 in Eq. 2
produce a matrix that is invariant to reflections. Unfortunately, the answer is that�1 must be
zero; but this value is not allowed because it causes� to be singular, and hence not a1 : 1
mapping. There is therefore no1 : 1 mapping betweenF6 andM6 that is simultaneously
invariant to translations, rotations and reflections of the Cartesian coordinate frame.1

Another way to say this is that if you use the motor representation of motion and force
vectors then you can not mix direct observations of a physical system with observations
taken (knowingly) through a mirror. This limitation is an artifact of the representation.

1See also [4, footnote 7]. This is the observation that originally inspired this paper.
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The above analysis covers only a small subset of the possible solutions to Eq. 1. It has
the advantages of familiarity and relevance, since it deals with the most popular choice of
coordinate systems for motors, but it is possible to synthesize many more solutions.

For example, consider the set
(A) of reciprocal basis pairs defined as follows:A is an
arbitrary reciprocal basis pair, and
(A) is the set of all reciprocal basis pairsB with the
property that the transformXm fromAM toBM happens to have the same numeric value as
an orthonormal matrix. (The property of orthonormality is not defined in a dual system of
vector spaces, but that does not prevent a transform matrix from being numerically equal to
an orthonormal matrix.)
(A) is clearly a somewhat artificial construct, but it is neverthe-
less a 15-parameter set of bases with the property that any� that is a scalar multiple of the
identity matrix is invariant with respect to any change of basis within the set. Moreover,
every reciprocal basis pair is a member of at least one of these sets.

There are almost certainly many more special solutions to Eq. 1 waiting to be described,
but there is no need to pursue this line of investigation any further in the present context.
One final comment that is worth making is that the invariant form of� in Eq. 2 is entirely
a function of the set of allowable basis pairs. Different sets have different invariant forms.
So Eq. 2 is not as fundamental as it might appear to be.

The issue of invariance has received a lot of attention in the literature. The most relevant
paper, at this point in the argument, is one by Lipkin and Duffy [8], which addresses the
problem of how to construct kinestatic filters (for hybrid motion/force control) that are
invariant with respect to specific changes of representation. Their paper uses Pl¨ucker axis
coordinates for twists and Pl¨ucker ray coordinates for wrenches, both coordinate systems
being constructed on a single underlying vector space. They have therefore chosen what
amounts to a motor representation, as defined in this paper, together with the set of special
basis pairs for Pl¨ucker coordinates. Eq. 2 is therefore the correct invariant form for their
choice of bases, and it does indeed appear in their Eq. 39. (Incidentally, Pl¨ucker coordinates
imply a specific choice for�, which is given by Eq. 2 with�1 = 1 and�2 = 0. This matrix
appears as~� in their paper.)

The important point is that Lipkin and Duffy (and, of course, many other papers) start
with a given mathematical structure and a given set of allowable bases, and then proceed
to identify invariant forms. The purpose of the present paper is to examine the initial
choice of structures and basis sets by exploring the relationships between the choice of
mathematical structure, the choice of intrinsic invariants, the choice of allowable basis sets,
and the number of freedoms made available to the analyst.

4 Invariance in the Twist/Wrench Representation

This section investigates the restrictions that must be placed on the choice of bases when
motion and force vectors are represented using a vector space of twists and a separate
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vector space of wrenches, these two spaces being connected only by a scalar product and a
common-screw relation.

The purpose of this section is to demonstrate that the invariance problem described
in the previous section is not confined to the motor representation, but is manifested in
any representational scheme where there is a notion that both motion-type and force-type
vectors arise from a common stock of type-neutral entities.

To make the point, the twist/wrench representation is defined to be a dual-space rep-
resentation of twists and wrenches, to which has been added a common-screw relation
between twists and wrenches. It is designed to be as close as possible to a pure dual-space
representation without abandoning screw theory altogether. It is not in widespread use.

The twist/wrench representation consists of a dual systemhM
6; F6; �i and a linear map-

ping � : F6 7! M
6. The elements ofM6 are twists, the elements ofF6 are wrenches,

the scalar product is defined as the work performed by a wrench acting over a twist, and
� embodies the common-screw relation. Specifically, a twistt and a wrenchw share a
common screw axis if and only if

t / �w :

Notice thatt shares a screw axis with all scalar multiples ofw, and vice versa. This is not
a1 : 1 relation, soM6 andF6 can not be mapped together to form a single vector space.�

must be nonsingular, but it is also homogeneous: all scalar multiples of� are equivalent.
On comparison with the motor representation, the only structural difference is that pro-

portionality has replaced strict equality in the� mapping. If we proceed to analyse the
twist/wrench representation in the same way as the motor representation then we obtain the
following equation in place of Eq. 1:

� / Xm�X
T
m :

As before, there is no solution to this equation in the general case, and it is therefore nec-
essary to restrict the choice of bases. In fact, if the solutions to this equation are expressed
in terms of an allowable set of transformsfXmg and a set of mappings that are invariant
within the transform set, then they are identical to the solutions to Eq. 1, except that the
transform sets can be enlarged by including all scalar multiples of the elements already in
the set.

The comments made earlier about the invariant forms of� being a function of the
choice of allowable bases, and about not being able to mix direct and mirror-image obser-
vations, apply also to the twist/wrench representation.

5 Consequences

The central theme of this paper is that motion and force vectors should be represented in
separate vector spaces, and that the only relationship between these two spaces should be
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a duality relationship arising from a scalar product. If an additional relationship is intro-
duced, like a common-screw or common-motor relation, then a conflict arises between,
on the one hand, the need to preserve the invariance of both the scalar product and the
common-entity relation with respect to a change of basis, and, on the other hand, the flexi-
bility to provide a free choice of basis vectors. In this conflict, the preservation of invariance
must take precedence.

In response to this situation, a theoretician might argue that one really ought to have
complete freedom to choose a basis in a vector space, without violating the invariance
of any relations or properties involving elements of that space, and hence argue that the
motor and twist/wrench representations are imperfect mathematical models of the physical
phenomena of motion and force.

On the other hand, a practitioner could accept this theoretical criticism, and counter
with the observation that nobody uses any of the bases that don’t work. A wily practitioner
might also point out that you don’t have a free choice of bases even in the dual-space
representation since, having chosen a basis freely in one of the two spaces, the other basis
is constrained to be reciprocal to it; so the argument is really about the degree of restriction,
and whether it has any practical consequences.

Until recently, the only documented disadvantage of the motor representation compared
with the dual-space representation has been the observation that a correct, invariant analysis
of rigid-body freedoms and constraints (for the purpose of hybrid motion/force control
of robots) is rather more complicated in the motor representation than in the dual-space
representation [11].

There is now a second reason to prefer the dual-space representation. A new tech-
nique for analysing constrained rigid-body (and related) systems has recently been devel-
oped, and this technique has produced some new theoretical results and improvements in
existing dynamics algorithms [6]. It is therefore arguably of some practical value. The
technique relies on being able to partition bothMn andFn simultaneously, each into two
subspaces, these being aligned with the freedoms and constraints of the particular system
under investigation. In the dual-space representation, a new basis pair is constructed that
is simultaneously in alignment with both partitions. The analysis then proceeds in the new
basis pair, where the constraints are trivial. This technique can not be used in the motor or
twist/wrench representations because there are not enough freedoms available to choose a
basis pair with the desired special properties.

The argument at work here is analogous to the argument against the4 � 4 matrix rep-
resentation used by some authors to derive and express the equations of motion of a rigid-
body system (e.g., [7]). This representation is perfectly adequate for the job, but fails to
support certain useful tools. For example, an inertia matrix in this representation contains
ten independent parameters, which is enough to represent a general rigid-body inertia, but
not enough to represent a general articulated-body inertia. So anyone who uses the4�4ma-
trix representation must do without articulated-body inertias and the concepts, techniques
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and algorithms that they support.
In the field of hybrid motion/force control, there has been much interest in invariant

techniques for describing and analysing motion and force freedoms and constraints. One
idea that is currently popular is that if the concepts used during the analysis have physical
meaning then the final result will be invariant [3]. This paper illustrates a potential weak-
ness in this strategy: by augmenting the dual-space representation with the common-screw
relation, which is certainly a physically-meaningful concept, the result is a reduction in the
anaylst’s freedom to write invariant formulas.

6 Conclusion

This paper has presented an analysis of an invariance problem involving the following
quantities:

1. a space of motion vectors representing infinitesimal displacements, velocities, etc. of
a physical system in general, and a rigid body in particular,

2. a space of force vectors representing the forces acting on the same system,

3. a scalar product defined between motion and force vectors, and

4. an additional relationship defined between motion and force vectors.

The scalar product represents the work (power, etc.) done by a force acting over a displace-
ment (velocity, etc.), and is expected to be invariant with respect to the choice of basis
vectors. The additional relationship represents a common property that is a consequence of
the method of defining certain kinds of motion and force vector, and is also expected to be
invariant.

Three possible representations of motion and force vectors are considered: dual-space,
motor and twist/wrench. In the dual-space representation, motion vectors are elements of
a vector spaceMn, force vectors are elements of a separate vector spaceF

n, and the two
spaces, together with the scalar product defined between them, constitute a dual system of
vector spaces. In this representation, the scalar product is invariant in value and form if
the two sets of basis vectors (one basis in each space) form a reciprocal basis pair. This
condition allows one basis to be chosen arbitrarily, whereupon the other basis is uniquely
defined by the reciprocity conditions.

The dual-space representation does not define any additional relationship between mo-
tions and forces. In contrast, the motor representation defines motion and force vec-
tors to be motors. This creates a1 : 1 common-motor relationship between them. The
twist/wrench representation is essentially the same as the dual-space representation, except
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that a common-screw relationship is defined between twists (motion vectors) and wrenches
(force vectors) with a common screw axis.

This paper shows that if a representation includes an additional relationship then ad-
ditional restrictions must be placed on the choice of basis vectors in order to preserve the
invariance of the additional relationship. These restrictions can be inconvenient, and they
reduce the set of analytical tools that can be supported by the representation. It is argued
that this is a good reason to prefer the dual-space representation.
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