
Robot Dynamics: Equations and Algorithms

Roy Featherstone

Department of Computer Science

University of Wales, Aberystwyth

Penglais, Aberystwyth SY23 3DB, Wales, UK

David Orin

Department of Electrical Engineering

Ohio State University

Columbus, OH 43210-1272, USA

Abstract

This paper reviews some of the accomplishments in
the field of robot dynamics research, from the devel-
opment of the recursive Newton-Euler algorithm to
the present day. Equations and algorithms are given
for the most important dynamics computations, ex-
pressed in a common notation to facilitate their pre-
sentation and comparison.

1 Introduction

Many contributions have been made in the area of
robot dynamics since the earliest work more than two
decades ago. In the field of the dynamics of mecha-
nisms, the robotics community has especially focused
on the problem of computational efficiency. In fact,
many of the most efficient algorithms in dynamics,
that are applicable to a wide class of mechanisms, were
developed by robotics researchers [23, 33, 10].

While computational efficiency continues to be im-
portant for the simulation and control of increasingly
complex mechanisms operating at higher speeds, other
aspects of the dynamics problem are also important.
Algorithms should be formulated with a compact set
of equations for ease of development and implemen-
tation. On the other hand, there should be a clear
relationship between these equations and the recur-
sive set from which the greatest computational effi-
ciency is obtained. The use of spatial notation and
spatial operator algebra [11, 29] has been very effec-
tive in this regard. Also, it is important to develop
algorithms which have applicability to robotic mech-
anisms with general geometries and joint structures.
While the early algorithms [23, 33, 10] were applica-

0 c© 2000 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be
obtained from the IEEE.

This is an electronic version of a paper that appeared orig-
inally in Proc. IEEE Int. Conf. Robotics & Automation, San
Francisco, CA, 2000, pp. 826–834. It is word-for-word identical
to the original, but the formatting is slightly different.

ble to single, open-chain manipulators with either ro-
tational or prismatic joints, general joint models have
since been developed and applied to more complex
configurations [11].

The purpose of this paper is to review some of the
major contributions in robot dynamics. The equa-
tions and algorithms for the most important recursive
computations will be presented in a common, concise
notation in Section 3. As given, the algorithms are
directly applicable to tree-structure mechanisms. The
equations for closed-loop systems are then developed
in a compact form, and this is followed by a discussion
of global analysis techniques. Space does not permit
us to include references to all of the important con-
tributions in the field. None-the-less the most cited
papers are generally included.

2 Foundational Work in Robot Dy-

namics

Early efforts in robot dynamics were directed to ex-
pressing the equations of motion for robot manipula-
tors, and other single open-chain systems, in the most
efficient form. Algorithms were developed for the most
common computations for robot analysis, control, and
simulation. In this section, emphasis will be placed on
outlining the major contributions and the work most
often cited. Unfortunately, space does not permit us
to provide a comprehensive review of the extensive lit-
erature in the area. See some of the early books in the
area for additional references [7, 11].

The classic approach to expressing the equations of
motion was based on a Lagrangian formulation [18,
31] of the problem. Algorithms developed using
Lagrangian dynamics were O(N 4), and had to be
adapted for real-time control. Efficient low-order al-
gorithms were sought for three major computations:

1. inverse dynamics in which the required joint ac-
tuator torques/forces are computed from a speci-
fication of the manipulator’s trajectory (position,
velocity, and acceleration),

2. forward dynamics in which the applied joint ac-



tuators torques/forces are specified and the joint
accelerations are to be determined, and

3. the manipulator inertia matrix which maps the
joint accelerations to the joint forces.

Inverse dynamics is used in feedforward control, and
forward dynamics is required for simulation. The in-
ertia (mass) matrix is used in analysis, in feedback
control to linearize the dynamics, and is an integral
part of many forward dynamics formulations.

The first researchers to develop O(N) algorithms
for inverse dynamics for robotics used a Newton-Euler
(NE) formulation of the problem. Stepanenko and
Vukobratovic [30] developed a recursive NE method
for human limb dynamics, and Orin et al. [26] made
the recursive method more efficient by referring forces
and moments to local link coordinates for real-time
control of a leg of a walking machine. Luh, Walker,
and Paul [23] developed a very efficient Recursive NE
Algorithm (RNEA) by referring most quantities to link
coordinates. The RNEA is the most cited. Holler-
bach [16] developed an O(N) recursive Lagrangian for-
mulation, but found that it was much less efficient
than the RNEA in terms of the number of multiplica-
tions and additions/subtractions required in the algo-
rithm. Further gains have been made in efficiency over
the years. The results of Balafoutis et al. [3] and He
and Goldenberg [15] are representative of those that
are up to a factor of 1.7 faster than early implementa-
tions of the RNEA (for a 6-DoF robot).

Walker and Orin [33] used the RNEA for inverse
dynamics [23] as the basis for efficient algorithms for
forward dynamics. Their Method 3, later named the
Composite-Rigid-Body Algorithm (CRBA) by Feath-
erstone [11], computed the inertial parameters of com-
posite sets of rigid bodies at the outer end of the ma-
nipulator chain. The columns of the inertia matrix
were computed very efficiently through successive ap-
plication of inverse dynamics with the joint velocities
set to zero, and the joint accelerations set to zero or
a unit vector. Since this implies that only one joint
is in motion at a time, the inverse dynamics reduces
to a much simplified analysis of a base set of links in
static equilibrium and a composite rigid body in mo-
tion at the outer end of the chain. Because of the need
to solve a linear system of equations whose size grows
with N , the algorithm was O(N3). For small N , the
first-order terms dominated the computation so that
the result was quite efficient.

The earliest known O(N) algorithm for forward dy-
namics was developed by Vereshchagin [32]. This algo-
rithm uses a recursive formula to evaluate the Gibbs-
Appel form of the equation of motion, and is appli-

cable to unbranched chains with revolute and pris-
matic joints. The recursive formula was obtained
via dynamic programming techniques. This algo-
rithm closely resembles the Articulated-Body Algo-
rithm (ABA), but the paper was way ahead of its
time and languished in obscurity for a decade. Later,
Armstrong developed an O(N) algorithm for mecha-
nisms with spherical joints [1], and then Featherstone
developed the ABA [10]. The first version of this al-
gorithm was applicable to manipulators with single-
degree-of-freedom joints, but the second included a
general joint model and was faster [11]. In terms of the
total number of arithmetic operations required, the
ABA was more efficient than the CRBA for N > 9 [11].
Also, using similar efficient transformations and link
coordinates as Featherstone [11, 10], Brandl et al. [8]
made further improvements on the ABA so that it was
roughly comparable to the CRBA for N = 6. Further
gains have been made in efficiency over the years, with
McMillan and Orin [24] being representative of those
that have reduced the computation (another 15% re-
duction).

The efficiency of the CRBA was directly related
to the efficiency of computing the joint space iner-
tia (mass) matrix [33]. Featherstone [11] used effi-
cient transformations and link coordinates to reduce
the computation of the inertia matrix by about 30%.
A number of other gains have been made over the
years [4, 25] giving an overall improvement of close to
a factor of two from that of [33]. Lilly and Orin [22]
developed four methods for computation of the iner-
tia matrix. Their Modified Composite Rigid Body
Method includes computation of the manipulator Ja-
cobian so that it is very efficient for computing the
inertia matrix in operational space.

Khatib [20] developed an operational-space formu-
lation of robot dynamics, in which the equations are
expressed in the same coordinate system that is used
to command the robot: Cartesian coordinates and ori-
entation of the end-effector. This formulation has been
particularly successful in hybrid motion/force control
and related applications [21].

Rodriguez [28] recognized the parallels between the
concepts and techniques of Kalman filtering and the
forward dynamics problem, and developed the spatial
operator algebra framework for the study of multibody
dynamics. This enabled him and others at JPL [29] to
develop alternative factorizations of the mass matrix
to derive the ABA. Jain [17] used the spatial opera-
tor algebra framework to provide a unified formulation
for manipulator dynamics. From this, he was able to
compare the various O(N3), O(N2), and O(N) algo-
rithms that had been previously published. Ascher,



Pai, and Cloutier [2] used the spatial operator frame-
work to unify the derivation of both the CRBA and the
ABA, as two elimination methods to solve the same
linear system. They also showed that the ABA is more
accurate than the CRBA.

The above works are all concerned with rigid-body
dynamics, and are therefore applicable whenever a
robot mechanism can be adequately modelled by a
rigid-body system. Some forms of non-rigid behaviour,
like compliance in the joint bearings, are relatively
easy to incorporate into a rigid-body model; but elas-
tic links are more complicated. This problem was ad-
dressed by Book [6], who developed an efficient, re-
cursive Lagrangian formulation (using 4× 4 matrices)
of both inverse and forward dynamics for serial chains
with flexible links. A general modal formulation of
elastic displacement was used.

3 Equations and Algorithms

This section presents the main algorithms and asso-
ciated equations. For the sake of brevity, equations
are written in spatial notation; but readers who are
not familiar with this notation should still be able to
follow the material.

Spatial vectors are 6 × 1 vectors containing both
the linear and angular components of physical quan-
tities like velocity, acceleration and force. For techni-
cal reasons, they are separated into two vector spaces:
motion-type vectors in M

6 and force-type vectors in
F

6. Tensor quantities, like inertia, are represented us-
ing 6 × 6 matrices. The underlying algebra is a dual
system of vector spaces. A brief description of the
current version of spatial algebra can be found in the
appendix of [12], and a detailed description of the pre-
vious version in [11].

3.1 The Recursive Newton-Euler Al-

gorithm

A general robot mechanism with tree structure can be
modelled by a set of N movable links (rigid bodies),
numbered 1 . . .N , a fixed base link, numbered 0, and a
set of N joints that connect between the links so that
joint i connects from link λ(i) to link i, where λ(i)
is the link number of the parent of link i in the tree,
taking the base link as the root node. The numbers
are chosen so that λ(i) < i. In the special case of an
unbranched kinematic chain, λ(i) = i−1 and the links
and joints are numbered consecutively from the base
to the tip.

If we let vi be the velocity of link i, and vJ
i be the

velocity across joint i then

vJ
i = vi − vλ(i) . (1)

The joint velocity can also be described in the form

vJ
i = hi q̇i , (2)

where hi is a 6× di matrix spanning the motion free-
dom subspace of joint i, q̇i is a di×1 vector of joint ve-
locity variables, and di is the degree of freedom (DoF)
of joint i. In the special case of a 1-DoF joint, hi is a
vector describing the joint’s axis of motion.

Combining Eqs. 1 and 2 produces

vi = vλ(i) + hi q̇i , (3)

which is the standard recursive formula for computing
link velocities. The equivalent formula for accelera-
tions is just the time-derivative of Eq. 3:

ai = aλ(i) + ḣi q̇i + hi q̈i , (4)

where ai is the acceleration of link i and q̈i is a vec-
tor of joint acceleration variables.1 For revolute and
prismatic joints, and many other special cases,

ḣi = vi × hi .

Given the velocity and acceleration of the base, v0

and a0, these formulas calculate the velocity and ac-
celeration of each link in turn, working outward from
the base to the terminal links. A typical algorithm
looks like this:

for i = 1 to N do

vi = vλ(i) + hi q̇i;

ai = aλ(i) + ḣi q̇i + hi q̈i

end

The property λ(i) < i ensures that vλ(i) is calculated
before vi.

The equation of motion for link i is

fi + fx
i = Ii ai + vi × Ii vi , (5)

where Ii is the spatial inertia of link i (a 6 × 6 ma-
trix), fi is the net force applied to link i through the
joints, and fx

i is the sum of all other forces acting on
link i. This equation combines Newton’s and Euler’s

1This equation uses spatial accelerations. The majority of
published works use standard linear and angular accelerations
instead, either separately (e.g. [23]) or in a 6-D notation (e.g.
spatial operator algebra). The difference is explained in [11,
§2.7]. Papers that use non-spatial accelerations have different
expressions in Eqs. 4 and 5.



equations for the linear and angular motion of a rigid
body.

fx
i may include contributions from springs, dampers,

force fields, contact with the environment, and so on;
but its value is assumed to be known, or at least to be
calculable from known quantities (in which case the
calculation of fx

i is considered to be a separate prob-
lem). fx

i may also include the effect of gravity on link
i; but the special case of a uniform gravitational field
can be simulated most efficiently by imparting a ficti-
tious acceleration to the base: if g is the gravitational
acceleration vector then add −g to a0 [23].

If we define fJ
i to be the force transmitted from link

λ(i) to link i through joint i, then

fi = fJ
i −

∑

j∈µ(i)

fJ
j (6)

where µ(i) is the set of children of link i:

µ(i) = { j | λ(j) = i } .

Combining Eqs. 5 and 6 produces

fJ
i = Ii ai + vi × Ii vi − fx

i +
∑

j∈µ(i)

fJ
j , (7)

which is a recursive formula for calculating joint forces,
starting at the terminal links and working towards the
base. A typical implementation of this formula looks
like this:

for i = 1 to N do

fJ
i = Ii ai + vi × Ii vi − fx

i

end

for i = N to 1 do

if λ(i) 6= 0 then fJ
λ(i) = fJ

λ(i) + fJ
i

end

The final step is to extract the di × 1 vector of joint
force variables, τ i, from the spatial vector of joint
forces. This is done by

τ i = hT
i fJ

i . (8)

Equations 3, 4, 7 and 8 together form the RNEA for
a general tree-structure mechanism.

For maximum efficiency, the equations should be
evaluated in link coordinates. If we assign a coordi-
nate system to each link, and represent each spatial
vector in the coordinates of the link to which it refers,
then Eqs. 3, 4 and 7 need to include coordinate trans-
forms at appropriate places in the expressions. The
modified equations are

vi = iXM
λ(i) vλ(i) + hi q̇i ,

ai = iXM
λ(i) aλ(i) + ḣi q̇i + hi q̈i

and

fJ
i = Ii ai + vi × Ii vi +

∑

j∈µ(i)

iXF
j fJ

j ,

where iXM
λ(i) and iXF

j are coordinate transformation
matrices for motion-type and force-type vectors, re-
spectively.

The complete Newton-Euler algorithm, in link co-
ordinates, looks like this:

for i = 1 to N do

vi = iXM
λ(i) vλ(i) + hi q̇i;

ai = iXM
λ(i) aλ(i) + ḣi q̇i + hi q̈i;

fJ
i = Ii ai + vi × Ii vi − fx

i

end

for i = N to 1 do

τ i = hT
i fJ

i ;

if λ(i) 6= 0 then fJ
λ(i) = fJ

λ(i) + λ(i)XF
i fJ

i

end

3.2 The Composite-Rigid-Body Algo-

rithm

As explained in [33, 11], if we express the equation
of motion of a tree-structure rigid-body system in the
form

Mq̈ + C(q, q̇) = τ ,

where q̈ ∈ M
n is the vector of generalized acceler-

ations, τ ∈ F
n is the vector of generalized forces,

M : M
n 7→ F

n is the system mass matrix (joint-
space inertia matrix), and C ∈ F

n contains all of the
acceleration-independent terms, then

Mq̈ = D(q, q̇, q̈) −D(q, q̇,0)

= D(q,0, q̈) −D(q,0,0) ,

where D(q, q̇, q̈) is an inverse dynamics calculation
function. The velocity argument can be set to zero
because the velocity terms cancel. (Gravity and fx

terms also cancel.) This equation immediately gives
us a simple algorithm for calculating M:

M δi = D(q,0, δi) −D(q,0,0) , i = 1 . . . n ,

where δi is an n × 1 vector with a 1 in row i and
zeros elsewhere. The expression M δi is column i of
M. This algorithm is method 1 in [33].

We may infer from this equation the following phys-
ical interpretation of M: in a system where all of the
velocities and acceleration-independent forces are zero,



column i of M is the generalized force vector that
causes an acceleration of δi.

If every joint has one DoF then there is a 1 : 1 cor-
respondence between joint numbers and column index
numbers; and we may interpret δi as a unit accelera-
tion of joint i, and each individual element Mji of M

as the force required at joint j to produce the acceler-
ation δi.

If the system contains multi-DoF joints then we
treat M as a block matrix—a matrix whose ele-
ments are themselves matrices—and arrange for block-
column i to be the group of di real columns that corre-
spond to the di acceleration variables of joint i. Sim-
ilar treatment is given to the rows of M and to com-
posite vectors such as q̈ and τ . This allows us to use
the same notation for single- and multi-DoF joints.

The CRBA is a fast algorithm for calculating M,
and it starts with the following observation: if the
zero-velocity system mentioned above is given an ac-
celeration of δi then the whole subtree rooted at link
i is behaving like a single (composite) rigid body, with
acceleration equal to hi, and the rest of the system is
in static equilibrium. The elements of (block) column
i of M can therefore be calculated according to the
following algorithm.

1. Let Ci be the composite rigid body comprising all
of the links in the subtree rooted at link i, and let
IC
i be the inertia of Ci.

2. Let fC
i be the force required to impart an accel-

eration of hi to Ci. This force is transmitted to
Ci through joint i; but since link λ(i) is in static
equilibrium, meaning that there is no net force
acting on it, the force transmitted through joint
λ(i) must be the same as the force through joint
i. By the same argument, every joint on the path
between the base and link i transmits fC

i .

3. Each element Mji, where j is a joint on the path
between the base and link i, is given by Mji =
hT

j fC
i (cf. Eq. 8).

4. Each element Mji, where j < i but is not on the
path between the base and link i, is zero.

5. Elements Mji, where j > i, are given by Mji =
MT

ij because M is symmetric.

The inertia of a composite rigid body is simply the
sum of the inertias of its component parts, so

IC
i =

∑

j∈ν(i)

Ij ,

where ν(i) is the set of link numbers of every link in
the subtree; but it is more efficient to use the recursive
formula

IC
i = Ii +

∑

j∈µ(i)

IC
j . (9)

The force exerted on Ci is

fC
i = IC

i hi ,

and the force transmitted through joint j (j ≤ i) is

fC
i (j) =

{

fC
i if i ∈ ν(j)
0 otherwise;

so the complete expression for M is

Mji =







hT
j IC

i hi if i ∈ ν(j)

hT
j IC

j hi if j ∈ ν(i)

0 otherwise.

(10)

Equations 9 and 10 express the CRBA in absolute
coordinates. This algorithm does run faster in link
coordinates (unless n is large [11]), and a typical im-
plementation might look like this:

M = 0;

for i = 1 to N do IC
i = Ii;

for i = N to 1 do

fC
i (i) = IC

i hi;

for each j ∈ ν(i) do Mij = hT
i fC

j (i);

if λ(i) 6= 0 then

IC
λ(i) = IC

λ(i) + λ(i)XF
i IC

i
iXM

λ(i);

for each j ∈ ν(i) do

fC
j (λ(i)) = λ(i)XF

i fC
j (i)

end

end

3.3 The Articulated-Body Algorithm

The starting point of the ABA is the observation that
the accelerations of bodies in a rigid-body system are
always linear functions of the applied forces. If the
motion of a rigid-body system is disturbed by the ap-
plication of an external test force, f , to any one body
in the system, then the acceleration of that body can
be expressed as a linear equation

a = Φf + b ,

where a is the body’s acceleration, b is the acceleration
that it would have if f were zero, and Φ : F

6 7→ M
6

is a 6 × 6 matrix. If the motion of the chosen body



is unconstrained then Φ is nonsingular, and the whole
equation can be inverted to read

f = IA a + pA , (11)

where IA = Φ−1 and pA = −IA b.
In articulated-body terminology, the whole system

is called an articulated body, the one body that ex-
periences the test force is called a handle, IA is the
articulated-body inertia (ABI) of the handle, and pA

is the corresponding bias force, which is the force re-
quired to bring the handle’s acceleration to zero.

The point of this exercise is that Eq. 11 applies to
any body in any system, no matter how many other
bodies there are in that system, provided only that
the chosen body has full motion freedom. This is the
secret of the O(N) complexity of the ABA.

The main step in the ABA is to calculate an ABI
and bias force for each link in turn, choosing the link
itself as the handle and the subtree rooted at that link
as the articulated body. This can be accomplished by
a computation that starts at the terminal links and
works toward the base, using the following recursive
formulae [11]:

IA
i = Ii +

∑

j∈µ(i)

(IA
j − IA

j hj (hT
j IA

j hj)
−1 hT

j IA
j ) , (12)

pA
i = pi+

∑

j∈µ(i)

(pα
j +IA

j hj (hT
j IA

j hj)
−1 (τ i−hT

j pα
j )) ,

(13)
where

pi = vi × Ii vi − fx
i ,

pα
j = pA

j + IA
j ḣj q̇j .

Having computed these quantities, the next step is
to calculate the joint accelerations. Assuming that
aλ(i) has already been computed, we can construct the
following system of equations in the three unknowns
ai, fJ

i and q̈i:

ai = aλ(i) + ḣi q̇i + hi q̈i ,

fJ
i = IA

i ai + pA
i ,

τ i = hT
i fJ

i .

These equations can be solved for q̈i to give

q̈i = (hT
i IA

i hi)
−1 (τ i − hT

i (IA
i aλ(i) + pα

i )) , (14)

which can in turn be used to evaluate ai, and so on.
Equations 3, 12, 13, 14 and 4 together describe the

ABA in absolute coordinates. This algorithm runs
faster in link coordinates. The procedure for convert-
ing the ABA to link coordinates is the same as for the
RNEA.

3.4 Closed-Loop Systems

Systems with closed kinematic loops are much more
complicated than tree-structure systems, and need a
lengthy explanation to do them justice; so we refer
readers to the lengthy explanations in [27, 34].

The main problem is that the joint variables are no
longer independent, since they are subject to (poten-
tially very complicated) loop-closure constraints. It
is usually impractical to identify an independent set
of position variables, so most algorithms work with
a larger, non-independent set, and take measures to
enforce the constraints that exist among them.

The most common method for dealing with kine-
matic loops is to extract a spanning tree from the
connectivity graph, compute the equations of motion
for the spanning tree, and then add loop-closure forces
that mimic the effects of the kinematic loops. A span-
ning tree is a subgraph that contains all of the nodes
and a subset of the arcs that were in the original graph,
and has tree connectivity. The corresponding tree-
structure mechanism contains all of the bodies but
only a subset of the joints that were in the original,
and the loop-closure forces mimic the effects of the
omitted joints.

Let us express the equation of motion of a closed-
loop system as follows:

Mq̈ + C = τ + τ c , (15)

where M and C refer to the spanning tree, and are
computed using kinematic-tree methods, q̈ and τ are
composite vectors containing the tree-joint accelera-
tion and force variables, respectively, and τ c is the
vector of tree-joint forces that mimics the effects of
the missing joints. The kinematic loops impose the
following constraints on the motion of the tree, and
hence on the values of the tree-joint variables:2

φ(q) = 0 . (16)

Equations 15 and 16 together provide a complete
description of the dynamics, but not in a convenient
form. The usual next step is to differentiate Eq. 16
twice to get an equation involving accelerations:3

φ̈ = φ′
q̈ + φ̇′ q̇ = 0 , (17)

where φ′ = ∂φ/∂q. In general, φ′ can be rank-
deficient, and the rank can vary as a function of q;

2This equation assumes scleronomic constraints. The pro-
cessing of general holonomic and nonholonomic constraints is
described in [27, 34].

3In practice, one must include constraint stabilization terms,
since the differential equation φ̈ = 0 is not numerically stable
[27, 34].



so let us also define a full-rank version of Eq. 17:

L q̈ = c , (18)

where L is an nc × n matrix comprising nc linearly-
independent rows of φ′, c contains the corresponding
elements of −φ̇′ q̇, and nc is the rank of φ′.

It can be shown that the loop-closure force can al-
ways be expressed in the form

τ c = LT λ + τ a , (19)

where λ is an nc×1 vector of unknown constraint-force
variables (or Lagrange multipliers), and τ a accounts
for any active forces in the loop-closing joints. If all of
these joints are passive then τ a = 0.

We can now combine Eqs. 15, 18 and 19 to produce

[

M LT

L 0

] [

q̈

−λ

]

=

[

τ − C + τ a

c

]

. (20)

This equation, or something similar, appears at some
point in most closed-loop dynamics formulations.

The next step is to solve Eq. 20, or its equivalent,
for q̈. The three main approaches are

1. solve Eq. 20 directly for q̈ and λ,

2. solve for λ first, and then use the result to solve
for q̈, or

3. solve Eq. 18 (or Eq. 17) for q̈, substitute the re-
sult into Eq. 15, eliminate the unknown constraint
forces, and solve for the remaining unknowns.

Method 1 is the simplest, but generally also the least
efficient. As the size of the system matrix is (n+nc)×
(n + nc), this method is O((n + nc)

3).
Method 2 is particularly useful if n � nc, and of-

fers the opportunity to use O(n) algorithms on the
spanning tree [5]. From Eq 20,

LM−1 LT λ = c− LM−1 (τ −C + τ a) . (21)

This equation can be formulated in O(n n2
c) operations

via O(n) algorithms, and solved in O(n3
c). Once λ is

known, τ c can be calculated in O(n nc) operations,
and Eq. 15 solved by an O(n) algorithm; so the total
complexity is O(n n2

c + n3
c).

Method 3 is useful if n−nc is small and/or nc has to
be determined at run time. A special version of Gaus-
sian elimination (or similar procedure), equipped with
a numerical rank test and designed to solve under-
determined systems, is applied directly to Eq. 17 to
get

q̈ = Ky + q̈0 ,

where y is a vector of n − nc unknowns (typically a
linearly-independent subset of the elements of q̈), q̈0 is
any particular solution to Eq. 17, and K is an n×(n−
nc) matrix with the property LK = 0. Substituting
this expression for q̈ into Eq. 15, and premultiplying
both sides by KT to eliminate the LT λ component of
τ c, produces

KT MKy = KT (τ −C + τ a −Mq̈0) . (22)

This method also has cubic complexity, but it can be
the most efficient if n−nc is small. It is also reported
to be more stable than Method 1 [9].

3.5 Global Analysis Techniques

It is possible to express the equation of motion of a
system of N independent rigid bodies in the form

f = I a + v × I v , (23)

where
f = [fT

1 , . . . , fT
N ]T ∈ F

6N ,

a = [aT
1 , . . . , aT

N ]T ∈ M
6N ,

I = diag(I1, . . . , IN ) : M
6N 7→ F

6N ,

and so on. Composite vectors and matrices like these
are the starting point of the spatial operator algebra
developed by Rodriguez et al. [28, 29, 17]. We give
them the spatial-algebra treatment by introducing the
two vector spaces M

6N and F
6N , which are Cartesian

products of N lots of M
6 and F

6, respectively.
Suppose that the above system is subjected to kine-

matic constraints that confine the (instantaneous) ve-
locity to an n-dimensional subspace S ⊂ M

6N . It fol-
lows that the acceleration is constrained by

a − a0 ∈ S ⊂ M
6N ,

where a0 is a vector of (known) velocity-product
terms. If S is a 6N × n matrix with the property
Range(S) = S, then

a = a0 + Sα , (24)

where α is a vector of unknowns.
These kinematic constraints will impose certain

forces on the system. Let us define the total applied
force as f = fa + fc, where fa is a vector of known
active forces and fc a vector of unknown constraint
forces. The equation of motion of the constrained sys-
tem is therefore

fa + fc = I a + v × I v . (25)



By the principle of virtual work, ST fc = 0; so if we
substitute for a using Eq. 24 and premultiply the result
by ST then we get

ST I Sα = ST (fa − I a0 − v × I v) . (26)

This equation has the same structure as Eq. 22, be-
cause they both use the same method for applying con-
straints and differ only in the system they start with:
Eq. 22 starts with a kinematic tree, and Eq. 26 with a
system of unconstrained rigid bodies. The matrices in
Eq. 26 are bigger than those in Eq. 22, but they have a
sparse structure that is useful for describing low-order
algorithms.

If we also introduce a subspace T ⊂ F
6N to describe

the space of all possible constraint forces arising from
the motion constraints, and a 6N × (6N − n) matrix
T satisfying Range(T) = T , then

fc = Tβ , TT S = 0 , TT a = TT a0 .

Combining these equations with Eq. 25 produces
[

I T

TT 0

] [

a

−β

]

=

[

fa − v × I v

TT a0

]

, (27)

which is obviously analogous to Eq. 20; and solving
for β produces

TT I−1 Tβ = TT a0 −TT I−1 (fa − v × I v) , (28)

which is analogous to Eq. 21.
Suppose that the constraints embodied in Eq. 24 are

due to a set of joints that connect the bodies together
into a kinematic tree, as described in Section 3.1. In
this case, Eq. 24 is a global expression of the individual
joint constraints

ai − aλ(i) = hi q̈i + ḣi q̇i , i = 1 . . .N .

This equation can be expressed in global form as

Pa = Hq̈ + Ḣ q̇ , (29)

where H = diag(hi), and P is the incidence matrix,4

defined as follows:

Pij =







16×6 : j = i
−16×6 : j = λ(i)
06×6 : otherwise.

This matrix is sparse, lower-triangular and (trivially)
invertible. Its inverse corresponds to the matrix φ∗ in
[29].

4The elements of a standard incidence matrix are the scalars
+1, −1 and 0, not 6×6 matrices. See [27, 34]. (Their incidence
matrix S corresponds to −PT .)

Putting Eq. 29 into the same form as Eq. 24, we get
S = P−1 H and α = q̈. Substituting these expressions
into Eq. 26 produces the following expression for the
system mass matrix:

M = HT P−T IP−1 H ,

which is the Newton-Euler factorization described in
[29]. The operator interpretation of this equation leads
directly to the RNEA, and via an operator inversion
formula to the ABA.

Another O(N) forward-dynamics algorithm for
kinematic trees can be obtained directly from Eq. 27
by exploiting its special sparse structure: it has only
O(N) non-zero elements, and it has a perfect elimina-
tion order [5].

For the special case of an unbranched chain, the
coefficient matrix in Eq. 28 is block-tridiagonal. This
means that it can be solved in O(log(N)) time on a
parallel computer with O(N) processors; and this is
the key step in the Constraint-Force Algorithm [14,
13].

4 Conclusion

This paper has reviewed some of the major contribu-
tions made in the field of robot dynamics. The main
algorithms and associated equations have been given
using a common, concise notation. The minimiza-
tion of computational costs has been key in developing
new formulations and algorithms for control and sim-
ulation of robotic mechanisms. Roboticists may be
credited with developing the most computationally-
efficient, low-order algorithms for inverse dynamics,
forward dynamics, and the inertia matrix.

Space did not permit us to include extensive discus-
sion of a number of other topics that have been inves-
tigated in robot dynamics. These include automatic
generation and simplification of symbolic equations of
motion, algorithms for parallel computers, and appli-
cations to particular classes of systems. For a particu-
lar robot configuration, the equations of motion when
expressed in symbolic form usually involve the least
computation to implement. The use of Kane’s equa-
tions [19] may be of value in this regard, although their
use may also involve considerable manipulation of the
basic equations to reduce them to the simplest form.
Through the use of parallel algorithms, researchers
have been able to reduce the computation of O(N)
algorithms to O(log N) on O(N) processors. The ap-
plication of robot dynamics to multilegged vehicles,
biomechanical systems, spacecraft, flexible structures,
and underwater robotic vehicles has extended many



of the basic algorithms to the needs of the particular
area. Hopefully, as more complex systems and appli-
cations are developed, research in robot dynamics will
help meet the expanding needs in performance.

5 Acknowledgments

Support for this work was provided in part by Grant
No. IIS-9907121 from the National Science Foundation
to The Ohio State University.

6 References

[1] W. W. Armstrong, “Recursive Solution to the
Equations of Motion of an n-Link Manipulator,”
in Proc. of 5th World Congress on Theory of Ma-
chines and Mechanisms, (Montreal), pp. 1343–
1346, July 1979.

[2] U. M. Ascher, D. K. Pai and B. P. Cloutier, “For-
ward Dynamics, Elimination Methods, and For-
mulation Stiffness in Robot Simulation,” Int. J.
Rob. Research, vol. 16, no. 6, pp. 749–758, 1997.

[3] C. A. Balafoutis, R. V. Patel, and P. Misra, “Effi-
cient Modeling and Computation of Manipulator
Dynamics Using Orthogonal Cartesian Tensors,”
IEEE Journal of Robotics and Automation, vol. 4,
pp. 665–676, December 1988.

[4] C. A. Balafoutis and R. V. Patel, “Efficient Com-
putation of Manipulator Inertia Matrices and
the Direct Dynamics Problem,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 19,
pp. 1313–1321, Sept/Oct 1989.

[5] D. Baraff, “Linear-Time Dynamics using La-
grange Multipliers,” Proc. SIGGRAPH ’96, pp.
137–146, New Orleans, August 1996.

[6] W. J. Book, “Recursive Lagrangian Dynamics of
Flexible Manipulator Arms,” Int. J. Robotics Re-
search, vol. 3, no. 3, pp. 87–101, 1984.

[7] M. Brady, J. M. Hollerbach, T. L. Johnson,
T. Lozano-Perez, and M. T. Mason, Robot Mo-
tion: Planning and Control. Cambridge, MA:
The MIT Press, 1982.

[8] H. Brandl, R. Johanni, and M. Otter, “A
Very Efficient Algorithm for the Simulation of
Robots and Similar Multibody Systems With-
out Inversion of the Mass Matrix,” in Proc. of
IFAC/IFIP/IMACS International Symposium on
Theory of Robots, (Vienna), December 1986.

[9] R. E. Ellis and S. L. Ricker, “Two Numerical
Issues in Simulating Constrained Robot Dynam-
ics,” IEEE Trans. on Systems, Man, and Cyber-
netics, vol. 24, no. 1, pp. 19–27, 1994.

[10] R. Featherstone, “The Calculation of Robot Dy-
namics using Articulated-Body Inertias,” Int. J.
Robotics Research, vol. 2, no. 1, pp. 13–30, 1983.

[11] R. Featherstone, Robot Dynamics Algorithms,
Boston/Dordrecht/Lancaster: Kluwer Academic
Publishers, 1987.

[12] R. Featherstone, “A Divide-and-Conquer Articu-
lated-Body Algorithm for Parallel O(log(n)) Cal-
culation of Rigid-Body Dynamics. Part 1: Ba-
sic Algorithm,” Int. J. Robotics Research, vol. 18,
no. 9, pp. 867–875, 1999.

[13] R. Featherstone and A. Fijany, “A Technique
for Analyzing Constrained Rigid-Body Systems
and Its Application to the Constraint Force Al-
gorithm,” IEEE Trans. Robotics & Automation,
vol. 15, no. 6, pp. 1140–4, 1999.

[14] A. Fijany, I. Sharf and G. M. T. D’Eleuterio,
“Parallel O(log N) Algorithms for Computation
of Manipulator Forward Dynamics,” IEEE Trans.
Robotics & Automation, vol. 11, no. 3, pp. 389–
400, June 1995.

[15] X. He and A. A. Goldenberg, “An Algorithm for
Efficient Computation of Dynamics of Robotic
Manipulators,” in Proc. of Fourth International
Conference on Advanced Robotics, (Columbus,
OH), pp. 175–188, June 1989.

[16] J. M. Hollerbach, “A Recursive Lagrangian For-
mulation of Manipulator Dynamics and a Com-
parative Study of Dynamics Formulation Com-
plexity,” IEEE Trans. on Systems, Man, and Cy-
bernetics, vol. SMC-10, no. 11, pp. 730–736, 1980.

[17] A. Jain, “Unified Formulation of Dynamics for Se-
rial Rigid Multibody Systems,” Journal of Guid-
ance, Control, and Dynamics, vol. 14, no. 3,
pp. 531–542, 1991.

[18] M. E. Kahn and B. Roth, “The Near Minimum-
time Control of Open-loop Articulated Kinematic
Chains,” Journal of Dynamic Systems, Measure-
ment, and Control, vol. 93, pp. 164–172, 1971.

[19] T. R. Kane and D. A. Levinson, “The Use of
Kane’s Dynamical Equations in Robotics,” Int.
J. Robotics Research, vol. 2, no. 3, pp. 3–21, 1983.



[20] O. Khatib, “A Unified Approach to Motion and
Force Control of Robot Manipulators: The Oper-
ational Space Formulation,” IEEE J. Robotics &
Automation, vol. 3, no. 1, pp. 43–53, 1987.

[21] O. Khatib, “Inertial Properties in Robotic Ma-
nipulation: An Object-Level Framework,” Int. J.
Robotics Research, vol. 14, no. 1, pp. 19–36, 1995.

[22] K. W. Lilly and D. E. Orin, “Alternate Formu-
lations for the Manipulator Inertia Matrix,” In-
ternational Journal of Robotics Research, vol. 10,
pp. 64–74, February 1991.

[23] J. Y. S. Luh, M. W. Walker and R. P. C. Paul,
“On-Line Computational Scheme for Mechanical
Manipulators,” Trans. ASME, J. Dynamic Sys-
tems, Measurement & Control, vol. 102, no. 2,
pp. 69–76, 1980.

[24] S. McMillan and D. E. Orin, “Efficient Compu-
tation of Articulated-Body Inertias Using Succes-
sive Axial Screws,” IEEE Trans. on Robotics and
Automation, vol. 11, pp. 606–611, 1995.

[25] S. McMillan and D. E. Orin, “Forward Dynam-
ics of Multilegged Vehicles Using the Composite
Rigid Body Method,” in Proc. of IEEE Interna-
tional Conference on Robotics and Automation,
(Leuven, Belgium), pp. 464–470, May 1998.

[26] D. E. Orin, R. B. McGhee, M. Vukobratovic,
and G. Hartoch, “Kinematic and Kinetic Analysis
of Open-chain Linkages Utilizing Newton-Euler
Methods,” Mathematical Biosciences, vol. 43,
pp. 107–130, February 1979.

[27] R. E. Roberson and R. Schwertassek, Dynam-
ics of Multibody Systems, Berlin/Heidelberg/New
York: Springer-Verlag, 1988.

[28] G. Rodriguez, “Kalman Filtering, Smoothing,
and Recursive Robot Arm Forward and Inverse
Dynamics,” IEEE Journal on Robotics and Au-
tomation, vol. RA-3, no. 6, pp. 624–639, 1987.

[29] G. Rodriguez, A. Jain and K. Kreutz-Delgado, “A
Spatial Operator Algebra for Manipulator Mod-
elling and Control,” Int. J. Robotics Research,
vol. 10, no. 4, pp. 371–381, 1991.

[30] Y. Stepanenko and M. Vukobratovic, “Dynamics
of Articulated Open-chain Active Mechanisms,”
Math. Biosciences, vol. 28, pp. 137–170, 1976.

[31] J. J. Uicker, “Dynamic Force Analysis of Spatial
Linkages,” Transactions of the ASME Journal of
Applied Mechanics, vol. 34, pp. 418–424, 1967.

[32] A. F. Vereshchagin, “Computer Simulation of the
Dynamics of Complicated Mechanisms of Robot
Manipulators,” Engineering Cybernetics, no. 6,
pp. 65–70, 1974.

[33] M. W. Walker and D. E. Orin, “Efficient Dynamic
Computer Simulation of Robotic Mechanisms,”
Trans. ASME, J. Dynamic Systems, Measure-
ment & Control, vol. 104, pp. 205–211, 1982.

[34] J. Wittenburg, Dynamics of Systems of Rigid
Bodies, Stuttgart: B. G. Teubner, 1977.


