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Abstract This paper presents a new model of the dynamics of balancing in the plane,
in which the essential parameters of the robot’s balancing behaviour are reduced to
just two numbers, both of which are simple functions of basicphysical properties
of the robot mechanism. A third number describes the effect of other movements on
the robot’s balance. Given this model, a high-performance balance controller can be
constructed as a simple four-term control law with gains that are trivial functions
of the two model parameters and a single value chosen by the user that determines
the overall speed of balancing. The model is first developed for a double pendulum,
and then extended to a general planar mechanism. Simulationresults are presented
showing the controller’s performance at following commanded motion trajectories
while simultaneously maintaining the robot’s balance.

1 Introduction

This paper considers the problem of a planar robot that is actively balancing on a
single point of support while simultaneously executing motion commands. In par-
ticular, the same motion freedom that is used for balancing is also subject to motion
commands. The robot is therefore overloaded in the sense that the number of task
variables to be controlled exceeds the number of actuator variables. Such overload-
ing is physically possible, and is routinely exhibited by circus performers and the
like, as well as by inverted pendulum robots [8] and wheeled robots that use the
same motion freedom both for balancing and for transport [4,10].

The main contribution of this paper is a new model of the plant(i.e., the robot
mechanism) in which the essential features of the robot’s balancing behaviour have
been reduced to just two numbers. A third number summarizes the disturbance
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caused by other movements being performed by the robot. The model is obtained
by exploiting a property of joint-space momentum variables. The advantages of this
model are: (1) it is exceptionally simple; (2) it applies to general planar robots, in-
cluding robots with kinematic loops; (3) it takes into account the effect of other
movements of the robot (i.e., movements for accomplishing tasks other than balanc-
ing); (4) the model parameters have a clear physical meaningthat is easy to under-
stand; (5) they can be computed efficiently using standard dynamics algorithms; and
(6) a high-performance balance controller is easily obtained by a simple feedback
control law acting directly on the new plant model.

A second contribution is the new balance controller derivedfrom the plant model.
It resembles the one presented in [1, 3], and shares its robustness to effects such as
torque limits, modelling errors and slippage at the point ofsupport. However, it is
simpler, and it can easily be applied to a general planar robot. It differs from the
typical approach to balance control in the literature, as exemplified by [7, 9, 13],
in that it is a four-term controller using full state feedback, rather than a three-term
output-zeroing controller with a one-dimensional zero dynamics. Note that the great
majority of literature in this area is actually on swing-up control (e.g. [11, 12]) which
is not considered here. The paper concludes with some simulation results showing
the performance of the new controller at balancing an inverted triple pendulum while
simultaneously following a variety of motion commands.

2 The New Model

A fundamental aspect of balancing is that the controller must control more state
variables than the available controls. To understand how this can be done, consider
the systemẋ = f(x, u), in whichx is a vector of state variables andu is a con-
trol input. (Bold letters denote vectors.) Ifx has the property thatxi+1 = ẋi for
everyi, then any control policy that successfully controlsx1 has the side-effect of
controlling all of the other elements ofx. Furthermore, the conditionxi+1 = ẋi

is sufficient but not necessary, and can be relaxed to some extent. Balancing is an
activity that can be accomplished in this way; and the new model described here is
essentially a good choice ofx, having a simple functionf , which allows balancing
to be achieved using a simple control law foru.

Figure 1 shows a planar 2R mechanism representing an inverted double pen-
dulum. Joint 1 is passive and represents the point contact between the foot of the
mechanism and a supporting surface (the ground). It is assumed that the foot neither
slips nor loses contact with the ground. The state variablesof this robot areq1, q2, q̇1
andq̇2. The total mass of the robot ism; the coordinates of its centre of mass (CoM)
relative to the support point arecx andcy; and it is assumed that the support point
is stationary, i.e., it is not a rolling contact. The equation of motion of the robot is

[

H11 H12

H21 H22

] [

q̈1
q̈2

]

+

[

C1

C2

]

=

[

0
τ2

]

, (1)
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Fig. 1 Planar 2R robot mech-
anism representing an in-
verted double pendulum actu-
ated at joint 2

whereHij are elements of the joint-space inertia matrix,Ci are elements of the
bias vector containing Coriolis, centrifugal and gravitational terms,̈qi are the joint
accelerations, andτ2 is the torque at joint 2. The conditions for the robot to be in a
balanced position are:cx = 0, q̇1 = 0 andq̇2 = 0. The robot is also subject to the
position commandq2 = qc, whereqc is an input to the controller.

Any mechanism that balances on a single point has the following special prop-
erty, which is central to the activity of balancing: the onlyforce that can exert a
moment about the support point is gravity. If we defineL to be the total angular
momentum of the robot about the support point then we find that

L̇ = −mgcx , (2)

whereg is the magnitude of gravitational acceleration (a positivenumber). This
equation implies

L̈ = −mgċx (3)

and ...
L = −mgc̈x . (4)

We also have
L = p1 = H11q̇1 +H12q̇2 , (5)

which follows from a special property of joint-space momentum that is proved in
the appendix: ifpi is the momentum variable of jointi then, by definition,pi =
∑

j Hij q̇j ; but if the mechanism is a kinematic tree thenpi is also the component in
the direction of motion of jointi of the total momentum of the subtree beginning at
bodyi. As the whole robot rotates about joint 1, it follows thatp1 is the total angular
momentum of the robot about the support point, hencep1 = L.

Observe thaṫL is simply a constant multiple ofcx, and thatL andL̈ are both
linear functions of the robot’s velocity, implying that theconditionL = L̈ = 0 is
equivalent toq̇1 = q̇2 = 0. So the three conditions for balance can be written as

L = L̇ = L̈ = 0 . (6)



4 Roy Featherstone

Thus, any controller that successfully drivesL to zero will cause the robot to bal-
ance, but will not necessarily bringq2 to the commanded angle.

We now introduce a fictitious extra joint between joint 1 and the base, which is a
prismatic joint acting in thex direction. To preserve the numbering of the existing
joints, the extra joint is called joint 0. This joint never moves, and therefore never
has any effect on the dynamics of the robot. Its purpose is to increase the number of
coefficients in the equation of motion, which now reads





H00 H01 H02

H10 H11 H12

H20 H21 H22









0
q̈1
q̈2



+





C0

C1

C2



 =





τ0
0
τ2



 . (7)

The position and velocity variables of joint 0 are always zero, andτ0 takes whatever
value is necessary to ensure thatq̈0 = 0. The reason for adding this joint is that
the special property of joint-space momentum, which we usedearlier to deduce that
p1 = L, also implies thatp0 is the linear momentum of the whole robot in thex
direction. Sop0 = mċx. With the extra coefficients in Eq. 7 we can write

p0 = H01q̇1 +H02q̇2 = mċx = −L̈/g , (8)

so that we now have a pair of linear equations relatingL and L̈ to the two joint
velocities:

[

L

L̈

]

=

[

H11 H12

−gH01 −gH02

] [

q̇1
q̇2

]

. (9)

Solving this equation foṙq2 gives

q̇2 = Y1L+ Y2L̈ , (10)

where

Y1 =
H01

D
, Y2 =

H11

gD
(11)

and
D = H12H01 −H11H02 . (12)

Clearly, this only works ifD 6= 0. The physical significance ofD = 0 is explained
below. From a control point of view, a problem also arises ifY1 = 0, and this too is
discussed below.

Fig. 2 New plant model for balancing
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We now have all the component parts of the new plant model, which is shown in
Fig. 2 in the form of a block diagram. The state variables areq2, L, L̇ andL̈, which
replace the original state variables. As will be shown in thenext section, a simple
feedback control law closed around this plant can makeq2 follow a commanded
trajectory while maintaining the robot’s balance. To be more accurate, what really
happens is that the control law tips the robot slightly off balance so that the neces-
sary balance recovery movement just happens to makeq2 follow the commanded
trajectory. Onceq2 has reached its final position, the other state variables settle to
zero, thereby satisfying the conditions for balance in Eq. 6.

Observe that the new plant model has only two parameters: thetwo gainsY1 and
Y2. These gains are calculated directly from the elements of the joint-space inertia
matrix in Eq. 7, which in turn can be calculated using any standard method for
calculating the joint-space inertia matrix of a robot. Thus, no special code is needed
to calculate the model parameters.

Physical Meaning of Y1 and Y2

The two gainsY1 andY2 are related in a simple way to two physical properties of
the mechanism: the natural time constant of toppling and thelinear velocity gain
[6]. The former quantifies the rate at which the robot begins to fall in the absence of
movement of the actuated joint. The latter measures the degree to which motion of
the actuated joint influences the motion of the CoM.

If there is no movement in the actuated joint then the robot behaves as if it were a
single rigid body, and its motion is governed by the equationof motion of a simple
pendulum:

Iθ̈ = mgc(cos(θ0)− cos(θ)) (13)

whereI is the rotational inertia of the robot about the support point, c = |c| is the
distance between the CoM and the support point,θ = tan−1(cy/cx) is the angle
of the CoM from thex axis, and the termmgc cos(θ0) is a hypothetical constant
torque acting at the support point, which serves to makeθ0 an equilibrium point of
the pendulum. Linearizing this equation aboutθ0, and definingφ = θ − θ0, results
in the following equation:

Iφ̈ = mgcyφ , (14)

which has solutions of the form

φ = Aet/Tc +Be−t/Tc (15)

whereA andB are constants depending on the initial conditions, andTc is the
natural time constant of the pendulum, given by

T 2
c =

I

mgcy
. (16)

If cy > 0 thenTc is real and Eq. 15 contains both a rising and a decaying exponen-
tial. This is characteristic of an unstable equilibrium. Ifcy < 0 thenTc is imaginary
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and Eq. 15 is a combination of sines and cosines, which is characteristic of a stable
equilibrium. But if cy = 0 then we are at the boundary between stable and unsta-
ble equilibrium andTc is unbounded. As we are considering the problem of a robot
balancing on a supporting surface, it is reasonable to assume cy > 0.

From the definition of the joint-space inertia matrix [5,§6.2] we haveH01 =
sT0 I

c
0s1 andH11 = sT1 I

c
1s1, wheres0 = [0 1 0]T, s1 = [1 0 0]T and

Ic
0 = Ic

1 =





I −mcy mcx
−mcy m 0
mcx 0 m



 (17)

(planar vectors and matrices—see [5,§2.16]). It therefore follows thatH01 = −mcy
andH11 = I, implying that

T 2
c =

−H11

gH01
. (18)

On comparing this with Eq. 11 it can be seen that

T 2
c =

−Y2

Y1
. (19)

The linear velocity gain of a robot mechanism,Gv, as defined in [6], is the ratio
of a change in the horizontal velocity of the CoM to the changein velocity of the
joint (or combination of joints) that is being used to manipulate the CoM. For the
robot in Fig. 1 the velocity gain is

Gv =
∆ċx
∆q̇2

, (20)

where both velocity changes are caused by an impulse about joint 2. The value of
Gv can be worked out via the impulsive equation of motion derived from Eq. 7:





ι0
0
ι2



 =





H00 H01 H02

H10 H11 H12

H20 H21 H22









0
∆q̇1
∆q̇2



 , (21)

whereι2 is an arbitrary nonzero impulse. Solving this equation forι0 gives

ι0 = H01∆q̇1 +H02∆q̇2

=
(

H02 −
H01H12

H11

)

∆q̇2 =
−D

H11
∆q̇2 . (22)

But ι0 is the ground-reaction impulse in thex direction, which is the step change
in horizontal momentum of the whole robot; so we also haveι0 = m∆ċx, and the
velocity gain is therefore

Gv =
∆ċx
∆q̇2

=
ι0

m∆q̇2
=

−D

mH11
. (23)
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The two plant gains can now be written in terms ofTc andGv as follows:

Y1 =
1

mgT 2
c Gv

, Y2 =
−1

mgGv
, (24)

and another interesting formula forY1 is

Y1 =
cy
IGv

. (25)

Fig. 3 Alternative version of new plant model for balancing

Equation 19 suggests a small modification to the plant model in Fig. 2, in which
Y2 is replaced withT 2

c as shown in Fig. 3. In this version of the model, it can be
seen that everything to the left ofY1 is concerned with the balancing motion of the
robot, whileY1 describes how the balancing motion affects joint 2. It was mentioned
earlier that the balance controller works by tipping the robot slightly off balance, so
that the corrective motion causesq2 to follow the commanded trajectory. The model
in Fig. 3 makes this idea a little clearer.

We are now in a position to explain the physical significance of the conditions
D 6= 0, which is required by the plant model, andY1 6= 0, which is required by the
control law in the next section.D 6= 0 is equivalent toGv 6= 0, and it is the condition
for joint 2 to have an effect on the horizontal motion of the CoM. If D = 0 in some
particular configuration then it is physically impossible for the robot to balance itself
in that configuration.Y1 = 0 occurs whency = 0, which is on the boundary between
unstable and stable equilibrium. A similar analysis appears in [1, 3].

3 The Balance Controller

The new plant model is interesting in its own right, but its usefulness lies in the
simplicity of the balance controller and the ease with whichit can be designed and
implemented. Consider the following four-term control law:

...
L = kdd(L̈− L̈c) + kd(L̇− L̇c) + kL(L− Lc) + kq(q2 − qc) . (26)

When the plant in Fig. 2 is subjected to this control law, the resulting closed-loop
equation of motion is
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







...
L
L̈

L̇
q̇2









=









kdd kd kL kq
1 0 0 0
0 1 0 0
Y2 0 Y1 0

















L̈

L̇
L
q2









−









kddL̈c + kdL̇c + kLLc + kqqc
0
0
0









, (27)

and the characteristic equation of the coefficient matrix is

λ4 − kddλ
3 − (kd + kqY2)λ

2 − kLλ− kqY1 = 0 . (28)

The simplest way to choose the gains is by pole placement. As the speed of balanc-
ing is determined mainly by the slowest pole, a sensible approach is to place all of
the poles at a point−p on the negative real axis, the value ofp being chosen by the
user, and choose the gains to make Eq. 28 match the polynomial

(λ+ p)4 = λ4 + 4pλ3 + 6p2λ2 + 4p3λ+ p4 = 0 . (29)

The resulting gains are

kdd = −4p kL = −4p3

kd = −6p2 + p4Y2/Y1 kq = −p4/Y1 .
(30)

Clearly, another polynomial could be used in place of Eq. 29.The choice ofp is not
critical, but also not arbitrary: if it is too small then balancing happens too slowly,
and if it is too large then the robot overshoots too much. A graph illustrating this
effect can be found in [1, p. 37]. Simulation studies suggestthat a value around 1.2
to 1.5 times1/Tc is about right.

It can be seen from Eq. 30 that this choice of gains is not possible if Y1 = 0.
However, this problem is unavoidable becauseY1 appears in the constant term of
Eq. 28, so ifY1 = 0 thenλ = 0 is always a root of the characteristic equation
regardless of the choice of gains.

The inputqc in Eq. 26 specifies the trajectory thatq2 is being commanded to
follow. It can be arbitrary in the sense of not being requiredto have any particular
algebraic form. However, a sufficiently wild or pathological command will cause
the robot to fall over. Simulation studies suggest that the most likely cause of failure
is if the command makes the robot enter a region of configuration space where the
velocity gain is close to zero.

The inputsLc, L̇c andL̈c in Eq. 26 help to improve the tracking accuracy of time-
varying trajectories. The simplest choice for these variables is to set them to zero.
In this case, the balance controller converges accurately to qc when it is constant,
but does not track accurately whenqc is changing. Nonzero values can improve the
tracking accuracy. For example, setting

Lc =
q̇c
Y1

(31)

produces accurate tracking of linear ramps (constantq̇c). (Ld in [1, 3] achieves the
same effect.) Additionally setting
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L̇c =
q̈c
Y1

−
Ẏ1

Y1
Lc (32)

achieves accurate tracking of parabolic curves (constantq̈c). However, the improved
tracking comes at the expense of increased overshoots and a tendency to over-react
to the high-frequency component of the command signal.

The value computed by Eq. 26 is
...
L, but the output of the control system has

to be either a torque command or an acceleration command for joint 2; that is,
eitherτ2 or q̈2. These quantities are computed as follows. First, from Eq. 4we have...
L = −mgc̈x; butmc̈x is thex component of the ground reaction force acting on
the robot, which isτ0. So

...
L = −gτ0. Substituting this into Eq. 7 and rearranging to

put all of the unknowns into a single vector produces the equation




0 H01 H02

0 H11 H12

−1 H21 H22









τ2
q̈1
q̈2



 =





−
...
L/g − C0

−C1

−C2



 , (33)

which can be solved for bothτ2 andq̈2.

4 Extension to More General Robots

If a robot has more than one actuated motion freedom then two aspects of the bal-
ance problem change: (1) there is now a choice of which motionto use for balancing,
and (2) there are now motion freedoms that are separate from the balancing activ-
ity, and can be controlled with little regard to the balancing activity. These motions
can be designed to lie in the balance null space, which is the space of motions that
the robot can make that do not affectcx. However, it may be easier to design these
motions to have very little effect oncx rather than no effect at all.

Let us now replace the double pendulum with a general planar mechanism, re-
taining only the fictitious prismatic joint and the passive revolute joint that models
the contact with the ground. The rest of the mechanism is assumed to be fully ac-
tuated, and it may contain kinematic loops. Lety = [y0 y1 y2 yT

3 ]
T be a vector of

generalized coordinates in whichy0 = q0, y1 = q1, y2 is the coordinate expressing
the movement to be used for balancing, andy3 is a vector containing the rest of the
generalized coordinates. The movement expressed byy2 can be any desired com-
bination of the actuated joint motions. In effect,y2 is the variable of a user-defined
virtual joint that is a generalization of joint 2 in the previous sections. The equation
of motion of this system is









H00 H01 H02 H03

H10 H11 H12 H13

H20 H21 H22 H23

H30 H31 H32 H33

















0
q̈1
ÿ2
ÿ3









+









C0

C1

C2

C3









=









τ0
0
u2

u3









, (34)
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in whichu2 andu3 are the generalized forces corresponding toy2 andy3, andHij

are now the elements and submatrices of a generalized inertia matrix. This equation
replaces Eq. 7. Equations 2–4 and 6 remain valid, but Eq. 5 becomes

L = H11q̇1 +H12ẏ2 +H13ẏ3 . (35)

Likewise, Eq. 8 becomes

−L̈/g = H01q̇1 +H02ẏ2 +H03ẏ3 , (36)

and so Eq. 9 becomes

[

L

L̈

]

=

[

H11 H12

−gH01 −gH02

] [

q̇1
ẏ2

]

+

[

H13

−gH03

]

ẏ3 . (37)

Solving this equation foṙy2 gives

ẏ2 = Y1L+ Y2L̈− Y3ẏ3 , (38)

whereY1 andY2 are as given in Eq. 11, and

Y3 =
E

D
(39)

where
E = H13H01 −H11H03 (40)

(cf. Eq. 12). The modified plant model is shown in Fig. 4. Observe that the influence
of the non-balance motions is limited to the value of the scalar signalY3ẏ3. If this
signal is zero then these motions have no effect.

Fig. 4 Modified plant model for a general planar robot

The design of the control system is largely unaffected byY3ẏ3. In particular,
Eq. 28 is unaffected, and the gains are still as given in Eq. 30. However, there is
scope to include terms inLc andL̇c to counteract the disturbances caused byY3ẏ3.
For example, one could use

Lc =
ẏc
Y1

+
Y3ẏ3

Y1
(41)
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in place of Eq. 31. Simulation studies indicate that this modification successfully
compensates for the low-frequency component of the disturbance, but causes the
balance controller to over-react to the high-frequency component. A low-pass filter
may help in this regard, but it is probably better to design the non-balance motion
to lie substantially in the balance null space so thatY3 is close to zero.

Finally, the generalized forces must be calculated and mapped to the actuated
joints. The first step is to solve









0 0 H01 H02

0 0 H11 H12

−1 0 H21 H22

0 −1 H31 H32

















u2

u3

q̈1
ÿ2









=









−
...
L/g − C0 −H03ÿ3

−C1 −H13ÿ3

−C2 −H23ÿ3

−C3 −H33ÿ3









, (42)

which is the generalization of Eq. 33. In this equation,ÿ3 is the desired acceleration
calculated by a separate motion control law responsible fory3. The final step is to
calculate

τa = G−T

[

u2

u3

]

, (43)

whereτa is the vector of force variables at the actuated joints, andG is the matrix
(chosen by the user) that maps[ẏ2 ẏT

3 ]
T to the vector of actuated joint velocities.

5 Simulation and Analysis

This section presents a simulation experiment in which the balance controller makes
an inverted triple pendulum perform a variety of manoeuvreswhile maintaining its
balance. A triple pendulum is chosen because it is the simplest mechanism that
exhibits all of the phenomena discussed in this paper.

The robot is a 3R planar kinematic chain that moves in the vertical plane. Joint 1
is passive, and the robot is pointing straight up in the configurationq1 = q2 = q3 =
0. The link lengths are0.2m, 0.25m and0.35m, and the masses are0.7kg, 0.5kg
and0.3kg. The links are modelled as point masses with the mass locatedat the far
end of each link. These are the parameters of a mechanism identified in [6] as being
good at balancing.

The control system consists of the balance controller of Section 3, which controls
the generalized coordinatey2, plus a PD position controller with exact inverse dy-
namics, which controlsy3. The tracking accuracy of the latter is essentially perfect
everywhere except where there is a step change in commanded velocity. The balance
controller is based on Eq. 26; the gains are as given in Eq. 30 with p = 7rad/s; Lc

andL̇c are as given in Eqs. 41 and 32; andL̈c =
...
y c/Y1. The position controller’s

gains are chosen to put both poles at14rad/s in order to make the point that the
control of variables not used for balancing can take place ata higher frequency than
that chosen for the balance controller.
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Fig. 5 Simulation results for balancing a triple pendulum (times in seconds, angles in radians)
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Figure 5(a) shows the command signals and response, both expressed in gener-
alized coordinates. Times are expressed in seconds and angles in radians. To show
the effect ofLc, L̇c and L̈c, this graph includes a signal ‘y2o’ showing what the
response of the balance controller would have been ifLc = L̇c = L̈c = 0. Note that
these are relatively large, fast motion commands. Comparable graphs in the litera-
ture (e.g. [7]) typically show slower, smaller movements which can be tracked more
accurately.

The commands consist of a step, a ramp and a sine wave fory2 while y3 is held
at zero, a ramp ofy3 while y2 is held at zero, and finally a ramp ofy2 with y3 held
at 1.5. Up until the final ramp,y2 andy3 are defined byy2 = q2 andy3 = q3, but
theny2 is redefined to bey2 = q2 − q3. So the final ramp involvesq2 ramping from
0 to 1.5 whileq3 ramps from 1.5 to 0. This can be clearly seen in Fig. 5(b), which
shows the motion of the robot expressed in joint space.

One obvious feature of Fig. 5(a) is the reverse movements at the beginning of
eachy2 manoeuvre and the overshoots at the end. These movements arephysically
necessary for maintaining the robot’s balance. However, the magnitudes of some
of these movements (e.g. the one at9.5s) are probably larger than the minimum
necessary. Note also that the ramp iny3 disturbsy2 only at the beginning and end of
the ramp. In the middle portion, the balance controller has successfully compensated
for the disturbance caused by this motion, thanks to the termY3ẏ3/Y1 in Eq. 41.

Figures 5(c) and 5(d) show the values ofTc andY1. Observe thatTc varies in a
narrow range from approximately0.21s to 0.233s even though the robot is making
large changes in its configuration. This is a property of the robot mechanism, and
will vary from one robot to the next. However, for most balancing robots it will
typically be the case thatTc does not vary very much. This suggests that assuming
a constant value forTc could be a good approximation.

For the first 13.5 secondsY1 varies in a range from approximately 26 to 33.
However, at the point wherey2 is redefined, it jumps to 282, and then rises to 311
and drops to 88 over the course of the final ramp and its overshoot. So for the first
13.5s the plant model is only slightly nonlinear, with the two gains varying in a
narrow range, but then the situation changes wheny2 is redefined.

The explanation can be found in Fig. 5(e), which plots the velocity gains of joints
2 and 3 along with their difference, which is the velocity gain of the motion freedom
q2−q3 [6]. For the first13.5sGv(y2) = Gv(q2); but theny2 is redefined, and for the
remaining timeGv(y2) = Gv(q2)−Gv(q3). AsGv(y2) appears in the denominator
of Eq. 24, this accounts for the large change inY1.

So from this brief analysis we can conclude the following: the robot is generally
well-behaved, and the plant model is only slightly nonlinear, up until the beginning
of the final ramp. But then the balance controller is given an especially bad new
definition ofy2: a motion that has almost no effect on the CoM (i.e., a velocity gain
close to zero). So the final ramp is an especially difficult command to follow, and
that is why the controller does not track this ramp as accurately as the first ramp.
Without an analysis of the physics of the balancing process,it is not at all obvious
why the tracking of the final ramp is not as good as the first.
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6 Conclusion

This paper has presented a new model of the physical process of balancing by a
general planar robot. The essential parameters of the robot’s balancing behaviour
are reduced to just two numbers, plus a third number to describe the influence of all
other movements on the balancing behaviour. All three numbers can be computed
efficiently using standard dynamics algorithms. The model gives rise to a simple
balance controller that allows the robot to balance while performing other motions;
and simulation results are presented showing the controller making a triple pendu-
lum perform a variety of large, fast movements while maintaining its balance. The
controller allows complete freedom in choosing which movements are to be used
for balancing and which for other tasks.

As planar balancing is a solved problem, the contribution ofthis paper is to sim-
plify the problem and its solution without loss of generality, and to present an ap-
proach to balancing that appeals more to the physical process of balancing and less
to the control theory. Clearly, the ultimate objective is a simpler theory of balancing
in 3D, and a first step in that direction appears in [1, 2].

Acknowledgements The work presented here owes much to the work of Morteza Azad as de-
scribed in [1].

Appendix

This appendix proves the result thatpi = sTi hν(i), wherepi andsi are the mo-
mentum variable and axis vector of jointi, andhν(i) is the total momentum of the
subtree or self-contained subsystem consisting of bodyi and its descendants. A self-
contained subsystem, in this context, is defined to be a subsystem in which every
kinematic loop that involves at least one body in the subsystem is entirely contained
within the subsystem. In general,si andhν(i) will be spatial vectors. However, if
the whole system is planar then they may instead be planar vectors.

Consider a kinematic tree consisting ofN bodies and joints numbered from1 to
N according to a regular numbering scheme. Without loss of generality, we assume
that every joint has only a single degree of freedom (DoF), which means that every
multi-DoF joint has already been replaced by a kinematically equivalent chain of
single-DoF joints connected by massless bodies, and that these extra bodies and
joints are already included inN .

Let p andq̇ denote the joint-space momentum and velocity vectors of thetree,
or the spanning tree if there are kinematic loops. By definition, the two are related
by the equation

p = Hq̇ , (44)

whereH is the joint-space inertia matrix. This implies that
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pi =

N
∑

j=1

Hij q̇j . (45)

The definition ofH for a general kinematic tree with single-DoF joints is

Hij =







sTi Iν(i)sj if i ∈ ν(j)
sTi Iν(j)sj if j ∈ ν(i)

0 otherwise
(46)

wheresi is the joint axis vector (i.e., joint motion subspace vector) of joint i, Ii is
the inertia of bodyi (spatial or planar as appropriate),ν(i) is the set of all bodies in
the subtree beginning at bodyi, andIν(i) =

∑

j∈ν(i) Ij .
Let κ̄(i) be the set of all bodies on the path between bodyi and the base (body

0), excluding both bodyi and the base, and letκ(i) = κ̄(i) ∪ {i} be the same set
including bodyi. If we use the terms ‘ancestor’ and ‘descendant’ in an inclusive
sense, meaning that bodyi is both an ancestor and a descendant of itself, and use
the term ‘proper ancestor’ in an exclusive sense, then the setsν(i), κ(i) andκ̄(i) can
be seen to be the sets of descendants, ancestors and proper ancestors, respectively,
of bodyi. κ(i) is also the set of joints on the path between bodyi and the base.

We now rewrite Eq. 46 as follows:

Hij =







sTi Iν(i)sj if j ∈ κ̄(i)
sTi Iν(j)sj if j ∈ ν(i)

0 otherwise
(47)

which makes it clear thatHij is nonzero only ifj ∈ κ̄(i) or j ∈ ν(i). Substituting
Eq. 47 into Eq. 45 gives

pi = sTi
(

∑

j∈κ̄(i)

Iν(i)sj q̇j +
∑

j∈ν(i)

Iν(j)sj q̇j
)

= sTi
(

∑

j∈κ̄(i)

∑

k∈ν(i)

Iksj q̇j +
∑

j∈ν(i)

∑

k∈ν(j)

Iksj q̇j
)

= sTi
(

∑

k∈ν(i)

∑

j∈κ̄(i)

Iksj q̇j +
∑

k∈ν(i)

∑

j∈ν(i)∩κ(k)

Iksj q̇j
)

= sTi

∑

k∈ν(i)

Ik
∑

j∈κ(k)

sj q̇j . (48)

The step from the second to the third line works as follows:
∑

j∈ν(i)

∑

k∈ν(j) is
the sum over allj, k pairs wherej is a descendant ofi andk is a descendant ofj,
whereas

∑

k∈ν(i)

∑

j∈ν(i)∩κ(k) is the sum over allj, k pairs wherek is a descendant
of i andj is both a descendant ofi and an ancestor ofk; but these two sets of pairs are
the same. The step from the third to the fourth line exploits the fact thatν(i)∩ κ(k)
is the set of all ancestors of bodyk from i onwards, whereas̄κ(i) is the set of all
ancestors of bodyk prior to i, so the union of the two sets isκ(k).
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Now letvk be the velocity of bodyk, lethk = Ikvk be the momentum of bodyk,
and lethν(i) =

∑

k∈ν(i) hk be the total momentum of the subtree beginning at body
i. The velocity of any body in a rigid-body system is the sum of the joint velocities
along any one path between that body and the base, sovk =

∑

j∈κ(k) sj q̇j . We can
now further simplify Eq. 48 as follows:

pi = sTi

∑

k∈ν(i)

Ikvk = sTi

∑

k∈ν(i)

hk = sTi hν(i) , (49)

which establishes the desired result for the case of a kinematic tree. If the system
contains kinematic loops then we find that Eq. 49 no longer holds for all joints,
but does still hold for any joint that is not involved in any kinematic loop. This is
equivalent to the condition stated at the beginning that thesubsystem consisting of
the bodies inν(i) be self-contained.
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