A New Simple M odel of Balancing in the Plane

Roy Featherstone

Abstract This paper presents a new model of the dynamics of balancihgiplane,
in which the essential parameters of the robot’s balancatmbiour are reduced to
just two numbers, both of which are simple functions of basigsical properties
of the robot mechanism. A third number describes the effeatieer movements on
the robot’s balance. Given this model, a high-performarmdarice controller can be
constructed as a simple four-term control law with gaing #ra trivial functions
of the two model parameters and a single value chosen by drahet determines
the overall speed of balancing. The model is first developed flouble pendulum,
and then extended to a general planar mechanism. Simufasaits are presented
showing the controller’s performance at following commeadanotion trajectories
while simultaneously maintaining the robot’s balance.

1 Introduction

This paper considers the problem of a planar robot that igedgthalancing on a
single point of support while simultaneously executing imottommands. In par-
ticular, the same motion freedom that is used for balana@dsio subject to motion
commands. The robot is therefore overloaded in the senséhihaumber of task
variables to be controlled exceeds the number of actuat@blas. Such overload-
ing is physically possible, and is routinely exhibited bycals performers and the
like, as well as by inverted pendulum robots [8] and wheetdabts that use the
same motion freedom both for balancing and for transpot (4.,
The main contribution of this paper is a new model of the p{aet, the robot

mechanism) in which the essential features of the robot&aneing behaviour have
been reduced to just two numbers. A third number summarhkzedisturbance
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caused by other movements being performed by the robot. Tukehis obtained
by exploiting a property of joint-space momentum variabldge advantages of this
model are: (1) it is exceptionally simple; (2) it applies tngral planar robots, in-
cluding robots with kinematic loops; (3) it takes into acabthe effect of other
movements of the robot (i.e., movements for accomplistasid other than balanc-
ing); (4) the model parameters have a clear physical medhatds easy to under-
stand; (5) they can be computed efficiently using standanduhycs algorithms; and
(6) a high-performance balance controller is easily oletdiby a simple feedback
control law acting directly on the new plant model.

A second contribution is the new balance controller derfveuh the plant model.
It resembles the one presented in [1, 3], and shares itstredsssto effects such as
torque limits, modelling errors and slippage at the poinsport. However, it is
simpler, and it can easily be applied to a general planartrdbdiffers from the
typical approach to balance control in the literature, asngplified by [7, 9, 13],
in that it is a four-term controller using full state feedka@ather than a three-term
output-zeroing controller with a one-dimensional zeroaltyics. Note that the great
majority of literature in this area is actually on swing-umtrol (e.g. [11, 12]) which
is not considered here. The paper concludes with some dimul@sults showing
the performance of the new controller at balancing an ieektriple pendulum while
simultaneously following a variety of motion commands.

2 The New Model

A fundamental aspect of balancing is that the controllertncositrol more state
variables than the available controls. To understand hasacdm be done, consider
the systemz = f(x,u), in which z is a vector of state variables amds a con-
trol input. (Bold letters denote vectors.)df has the property that,; = ; for
everyi, then any control policy that successfully controlshas the side-effect of
controlling all of the other elements af. Furthermore, the condition; ;1 = i;
is sufficient but not necessary, and can be relaxed to soneateBalancing is an
activity that can be accomplished in this way; and the newehddscribed here is
essentially a good choice af having a simple functiorf, which allows balancing
to be achieved using a simple control law for

Figure 1 shows a planar 2R mechanism representing an idvedeble pen-
dulum. Joint 1 is passive and represents the point contdeeke the foot of the
mechanism and a supporting surface (the ground). It is asdtimat the foot neither
slips nor loses contact with the ground. The state variaijléss robot arey;, g2, ¢1
andg,. The total mass of the robotis; the coordinates of its centre of mass (CoM)
relative to the support point arg andc,; and it is assumed that the support point
is stationary, i.e., it is not a rolling contact. The equatid motion of the robot is

) ) |6 = o) o
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Fig. 1 Planar 2R robot mech-
anism representing an in-
verted double pendulum actu-
ated at joint 2

where H;; are elements of the joint-space inertia matt, are elements of the
bias vector containing Coriolis, centrifugal and gravdaal termsj; are the joint
accelerations, ant is the torque at joint 2. The conditions for the robot to be in a
balanced position are;, = 0, ¢g; = 0 and¢, = 0. The robot is also subject to the
position commands = ¢., whereg. is an input to the controller.

Any mechanism that balances on a single point has the fallgwpecial prop-
erty, which is central to the activity of balancing: the offidlyce that can exert a
moment about the support point is gravity. If we defin¢o be the total angular
momentum of the robot about the support point then we find that

L= —mgcy , (2)

whereg is the magnitude of gravitational acceleration (a positiuenber). This
equation implies

L= —mgéy (3)
and
L= _mgéw . (4)
We also have
L =p = Huq1 + Hi2qG2, 5)

which follows from a special property of joint-space momantthat is proved in
the appendix: ifp; is the momentum variable of joiritthen, by definitionp; =
>_; Hijq;; butif the mechanism is a kinematic tree theris also the componentin
the direction of motion of joini of the total momentum of the subtree beginning at
bodyi. As the whole robot rotates about joint 1, it follows thats the total angular
momentum of the robot about the support point, hence L.

Observe thaf. is simply a constant multiple of,, and thatZ and L are both
linear functions of the robot’s velocity, implying that teenditionZ = . = 0 is
equivalenttaj; = g2 = 0. So the three conditions for balance can be written as

L=L=L=0. (6)
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Thus, any controller that successfully drivedo zero will cause the robot to bal-
ance, but will not necessarily bring to the commanded angle.

We now introduce a fictitious extra joint between joint 1 anellbase, which is a
prismatic joint acting in the: direction. To preserve the numbering of the existing
joints, the extra joint is called joint 0. This joint never w&s, and therefore never
has any effect on the dynamics of the robot. Its purpose isci@ase the number of
coefficients in the equation of motion, which now reads

Hoo Ho1 Hoz2| | 0 Co 70
Hyo Hi1 Hio| |1+ [Ci| =|0]. (7)
Hog Hoy Hoo| | G2 Cs T2

The position and velocity variables of joint 0 are alwayzendr, takes whatever
value is necessary to ensure tljgt= 0. The reason for adding this joint is that
the special property of joint-space momentum, which we eselier to deduce that
p1 = L, also implies thap, is the linear momentum of the whole robot in the
direction. Sapy = mé,.. With the extra coefficients in Eq. 7 we can write

po = Ho1G1 + Hozde = mé, = —L/g, 8)

so that we now have a pair of linear equations relafingnd . to the two joint

velocities:
L _| Hun Hi g1 )
L —gHo1 —gHop2| |G2|

Solving this equation fog, gives

G2 =YViL+ oL, (10)
where I I
y; = -2 Yy = —2 11
1 D ) 2 gD ( )
and
D = H12H()1 — HllH()Q . (12)

Clearly, this only works ifD = 0. The physical significance dp = 0 is explained
below. From a control point of view, a problem also ariseg,it= 0, and this too is
discussed below.

T—> 1/s > 1/s o 1/s Lo 1, (x)-2

1/s F— a2

Y,

Fig. 2 New plant model for balancing
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We now have all the component parts of the new plant modekwisishown in
Fig. 2 in the form of a block diagram. The state variablesjard., L and L, which
replace the original state variables. As will be shown inrkegt section, a simple
feedback control law closed around this plant can mgkéllow a commanded
trajectory while maintaining the robot’s balance. To be enaccurate, what really
happens is that the control law tips the robot slightly offlbae so that the neces-
sary balance recovery movement just happens to makellow the commanded
trajectory. Oncey, has reached its final position, the other state variabléke get
zero, thereby satisfying the conditions for balance in Eq. 6

Observe that the new plant model has only two parametersathgainsy; and
Y>. These gains are calculated directly from the elementseofaimt-space inertia
matrix in Eq. 7, which in turn can be calculated using any étad method for
calculating the joint-space inertia matrix of a robot. Thusspecial code is needed
to calculate the model parameters.

Physical Meaning of Y; and Y5

The two gainsy; andY; are related in a simple way to two physical properties of
the mechanism: the natural time constant of toppling anditiear velocity gain
[6]. The former quantifies the rate at which the robot begirfall in the absence of
movement of the actuated joint. The latter measures theedegrwhich motion of
the actuated joint influences the motion of the CoM.

If there is no movementin the actuated joint then the robbalkies as if it were a
single rigid body, and its motion is governed by the equatibmotion of a simple
pendulum:

16 = mge(cos(6y) — cos(0)) (13)

where! is the rotational inertia of the robot about the support pair= |c| is the
distance between the CoM and the support pdint tan~!(c,/c,) is the angle
of the CoM from thex axis, and the termngc cos(6y) is a hypothetical constant
torque acting at the support point, which serves to ntkan equilibrium point of
the pendulum. Linearizing this equation ab@gtand definings = 6 — 6, results
in the following equation: )

1 = mgcyo, (14)

which has solutions of the form
¢ = Aet/Te 4 Be t/Te (15)

where A and B are constants depending on the initial conditions, apds the
natural time constant of the pendulum, given by

1

T2 =
mgce,

c

(16)

If ¢, > 0thenZ, is real and Eq. 15 contains both a rising and a decaying expone
tial. This is characteristic of an unstable equilibriumeJf< 0 thenT is imaginary
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and Eq. 15 is a combination of sines and cosines, which isacteristic of a stable
equilibrium. But if¢, = 0 then we are at the boundary between stable and unsta-
ble equilibrium andl. is unbounded. As we are considering the problem of a robot
balancing on a supporting surface, it is reasonable to assyn 0.

From the definition of the joint-space inertia matrix [fB.2] we haveHy; =
s¢ I$s1 andHyy = sTI7sy, whereso = [010]%, sy =[100]" and

I —mcy mey
I$=I;=|-mc, m O (17)
mc, 0 m

(planar vectors and matrices—seefB,16]). It therefore follows thally; = —mc,
andHy, = I, implying that

T: = ——. (18)
On comparing this with Eq. 11 it can be seen that

-Y:

2 2

T2 = S (29)
The linear velocity gain of a robot mechanist,, as defined in [6], is the ratio

of a change in the horizontal velocity of the CoM to the chaimgeelocity of the

joint (or combination of joints) that is being used to mangte the CoM. For the

robot in Fig. 1 the velocity gain is

 Aé,

CYVV - . bl
Ago

(20)

where both velocity changes are caused by an impulse akiati®joThe value of
G+ can be worked out via the impulsive equation of motion derivem Eq. 7:

Lo Hoo Ho1 Hoz 0
0| = |Hio Hi1 Hi2| |Ad¢1|, (21)
Lo Hyg Hoy Haz| |Ado

wherets is an arbitrary nonzero impulse. Solving this equationfagives
to = Ho1 A1 + Ho2Ago

Hy1Hqo . -D .
= (Hoo — Ajgo = — Ads . 22
(Ho2 o ) Ada 7, A (22)

But .o is the ground-reaction impulse in thedirection, which is the step change
in horizontal momentum of the whole robot; so we also hgve- mA¢,, and the
velocity gain is therefore

o ACI o Lo o -D

Gy =—F= — = .
Aga mAgy  mHy

(23)
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The two plant gains can now be written in termslofandG,, as follows:

! Yy — — (24)

Yie——
! mgT2G,’ mgG., '

and another interesting formula ot is

(25)

L— 1/s > 1/s >

> q2

Fig. 3 Alternative version of new plant model for balancing

Equation 19 suggests a small modification to the plant madeig. 2, in which
Y, is replaced withl?> as shown in Fig. 3. In this version of the model, it can be
seen that everything to the left &f is concerned with the balancing motion of the
robot, whileY; describes how the balancing motion affects joint 2. It wastmnaed
earlier that the balance controller works by tipping theatadightly off balance, so
that the corrective motion causgsto follow the commanded trajectory. The model
in Fig. 3 makes this idea a little clearer.

We are now in a position to explain the physical significantthe conditions
D # 0, which is required by the plant model, aid # 0, which is required by the
control law in the next sectio # 0 is equivalenttdr, # 0, and itis the condition
for joint 2 to have an effect on the horizontal motion of theMCdf D = 0 in some
particular configuration then it is physically impossibbe the robot to balance itself
in that configurationy; = 0 occurs whem, = 0, which is on the boundary between
unstable and stable equilibrium. A similar analysis appé@af1, 3].

3 The Balance Controller

The new plant model is interesting in its own right, but itefugness lies in the
simplicity of the balance controller and the ease with whiaan be designed and
implemented. Consider the following four-term control flaw

L =kaa(L — Le) + ka(L — Le) + ko (L — Lo) + kg(g2 — q.) . (26)

When the plant in Fig. 2 is subjected to this control law, thsulting closed-loop
equation of motion is
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L kaa ka kr kq| | L kaale + kaLe + kpLe 4 kqqe
il=lo ool 0 e
2 Y> 01 0] |g0 0
and the characteristic equation of the coefficient matrix is
M — kga\® — (kg + kg Y2)N? — kXA — kY1 = 0. (28)

The simplest way to choose the gains is by pole placementésgeed of balanc-
ing is determined mainly by the slowest pole, a sensible@ggr is to place all of
the poles at a pointp on the negative real axis, the valueabeing chosen by the
user, and choose the gains to make Eg. 28 match the polynomial

(A +p)* = A+ 4pX3 4 6p22% + 4p® A +p? = 0. (29)
The resulting gains are

— — 3

kag = —4p kr = —4p (30)
ko= —6p” +p'Ya/Y1  kg=-p'/V1.

Clearly, another polynomial could be used in place of EqT2@ choice of is not

critical, but also not arbitrary: if it is too small then batang happens too slowly,

and if it is too large then the robot overshoots too much. Apgriflustrating this

effect can be found in [1, p. 37]. Simulation studies sugfesta value around 1.2

to 1.5 timesl /T, is about right.

It can be seen from Eqg. 30 that this choice of gains is not pteséfiY; = 0.
However, this problem is unavoidable becat3eappears in the constant term of
Eq. 28, so ifY; = 0 thenA = 0 is always a root of the characteristic equation
regardless of the choice of gains.

The inputg. in Eq. 26 specifies the trajectory that is being commanded to
follow. It can be arbitrary in the sense of not being requii@tiave any particular
algebraic form. However, a sufficiently wild or patholodicammand will cause
the robot to fall over. Simulation studies suggest that tletrikely cause of failure
is if the command makes the robot enter a region of configuragpace where the
velocity gain is close to zero.

TheinputsL,, L. andL. in Eq. 26 help to improve the tracking accuracy of time-
varying trajectories. The simplest choice for these védemis to set them to zero.
In this case, the balance controller converges accuraiejy Wwhen it is constant,
but does not track accurately whenis changing. Nonzero values can improve the
tracking accuracy. For example, setting

de
Lo=X 1
v (31)

produces accurate tracking of linear ramps (consign{L, in [1, 3] achieves the
same effect.) Additionally setting
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Lc = — =L (32)

achieves accurate tracking of parabolic curves (congtaritowever, the improved
tracking comes at the expense of increased overshoots andercy to over-react
to the high-frequency component of the command signal.

The value computed by Eq. 26 s, but the output of the control system has
to be either a torque command or an acceleration commanaifar 2; that is,
eitherm, or ¢,. These quantities are computed as follows. First, from Bae dhave
I = —mgé,; butmé, is thex component of the ground reaction force acting on
the robot, which isy. So7, = —g7. Substituting this into Eq. 7 and rearranging to
put all of the unknowns into a single vector produces the touoa

0 Hoi Hoz| |72 ~L/g—Co
0 Hyy Hiz| |G1]| = -C4 ; (33)
—1 Hoy Hoo| |Go —Cs

which can be solved for boty andgs.

4 Extension to More General Robots

If a robot has more than one actuated motion freedom then $pwects of the bal-
ance problem change: (1) there is now a choice of which matiose for balancing,
and (2) there are now motion freedoms that are separate frerhalancing activ-
ity, and can be controlled with little regard to the balagcattivity. These motions
can be designed to lie in the balance null space, which ispaeesof motions that
the robot can make that do not affegt However, it may be easier to design these
motions to have very little effect o), rather than no effect at all.

Let us now replace the double pendulum with a general plamahanism, re-
taining only the fictitious prismatic joint and the passiegalute joint that models
the contact with the ground. The rest of the mechanism isnasduo be fully ac-
tuated, and it may contain kinematic loops. ket [yo v1 y2 y1|* be a vector of
generalized coordinates in whigh = qo, y1 = q1, y2 IS the coordinate expressing
the movement to be used for balancing, gnds a vector containing the rest of the
generalized coordinates. The movement expressag logn be any desired com-
bination of the actuated joint motions. In effegt,is the variable of a user-defined
virtual joint that is a generalization of joint 2 in the preus sections. The equation
of motion of this system is

Hog Hor Ho2 Hosz| | O Co 70
Hyy Hyw Hip Hiz| |1 Cy 0

4| - , 34
Hyy Hoy Hoo Hoz| | o Cs Uo (34)

Hsy Hsy H3y H3z| | Y3 Cs U3
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in whichu, andus are the generalized forces correspondingstandy, andH;;
are now the elements and submatrices of a generalizedameatirix. This equation
replaces Eq. 7. Equations 2—4 and 6 remain valid, but Eq. érbes

L = Huqi + Higye + Hizys . (35)
Likewise, Eq. 8 becomes
—~L/g = Horgy + Ho2tjo + Hozys (36)

and so Eq. 9 becomes

L Hyy  His Q1 Hy; | .
- = . . 37
{L] [—9H01 —9H02] [yz + —gHo| Y3 (37)

Solving this equation fog, gives
o =YiL+ Yol — Yags, (38)
whereY; andY; are as given in Eq. 11, and
Y; = — (39)
where

E = H3Hy — Hi1 Hops (40)

(cf. Eg. 12). The modified plant model is shown in Fig. 4. Oliséhat the influence
of the non-balance motions is limited to the value of theacsignalY;y;. If this
signal is zero then these motions have no effect.

T— 1/s s 1/s 1/s

> Y2

Y3

Fig. 4 Modified plant model for a general planar robot

The design of the control system is largely unaffected¥gy,. In particular,
Eq. 28 is unaffected, and the gains are still as given in EqHg8Qvever, there is
scope to include terms i, andL. to counteract the disturbances causedbys;.
For example, one could use

Yo |, Ysys
Le=2L 4230 41
Y. TV, (41)
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in place of Eq. 31. Simulation studies indicate that this ification successfully
compensates for the low-frequency component of the diahadb, but causes the
balance controller to over-react to the high-frequencyponent. A low-pass filter
may help in this regard, but it is probably better to designribn-balance motion
to lie substantially in the balance null space so tais close to zero.

Finally, the generalized forces must be calculated and edpp the actuated
joints. The first step is to solve

0 O Hop Hpa| |u2 —L/g— Co — Hyz¥s

0 0 Hiy Hio| |us| _ —C1 — Hi393 (42)
—1 0 Hoy Hao| |Ga —Cy — Has4 ’

0 —1 H3 Hso| |2 —C3 — H33i

which is the generalization of Eq. 33. In this equatiggjs the desired acceleration
calculated by a separate motion control law responsiblg foiT he final step is to
calculate

us

rn=G"T {“2] , (43)

wherer, is the vector of force variables at the actuated joints, @nid the matrix
(chosen by the user) that mags y;,f]T to the vector of actuated joint velocities.

5 Simulation and Analysis

This section presents a simulation experimentin which tlarize controller makes
an inverted triple pendulum perform a variety of manoeuwkse maintaining its
balance. A triple pendulum is chosen because it is the sshpiechanism that
exhibits all of the phenomena discussed in this paper.

The robot is a 3R planar kinematic chain that moves in thacaplane. Joint 1
is passive, and the robot is pointing straight up in the camfitiong; = ¢2 = g3 =
0. The link lengths ar®.2m, 0.25m and0.35m, and the masses aberkg, 0.5kg
and0.3kg. The links are modelled as point masses with the mass loehtbe far
end of each link. These are the parameters of a mechanistifieléin [6] as being
good at balancing.

The control system consists of the balance controller ofi@e8, which controls
the generalized coordinatg, plus a PD position controller with exact inverse dy-
namics, which controlgs. The tracking accuracy of the latter is essentially perfect
everywhere except where there is a step change in commaalbeity. The balance
controller is based on Eq. 26; the gains are as given in Eq.i80pnw= 7rad/s; L.
andL. are as given in Egs. 41 and 32; ahd = ¥./Y1. The position controller's
gains are chosen to put both poleslatad/s in order to make the point that the
control of variables not used for balancing can take plagehégher frequency than
that chosen for the balance controller.
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Fig. 5 Simulation results for balancing a triple pendulum (timeseéconds, angles in radians)
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Figure 5(a) shows the command signals and response, botbsseg in gener-
alized coordinates. Times are expressed in seconds aneksangidians. To show
the effect ofL., L. and L., this graph includes a signal ‘y20’ showing what the
response of the balance controller would have beén i L. = L. = 0. Note that
these are relatively large, fast motion commands. Compeaghphs in the litera-
ture (e.g. [7]) typically show slower, smaller movementschitcan be tracked more
accurately.

The commands consist of a step, a ramp and a sine wavyg fehile y3 is held
at zero, a ramp o3 while y- is held at zero, and finally a ramp gf with y5 held
at 1.5. Up until the final rampy, andys are defined by, = ¢ andys = ¢s, but
thenys is redefined to bg, = ¢2 — ¢3. So the final ramp involveg ramping from
0 to 1.5 whilegz ramps from 1.5 to 0. This can be clearly seen in Fig. 5(b), tvhic
shows the motion of the robot expressed in joint space.

One obvious feature of Fig. 5(a) is the reverse movementseabéginning of
eachy, manoeuvre and the overshoots at the end. These movemeptsyaieally
necessary for maintaining the robot’s balance. However nilagnitudes of some
of these movements (e.g. the oneddis) are probably larger than the minimum
necessary. Note also that the ramp4rdisturbsys only at the beginning and end of
the ramp. In the middle portion, the balance controller i@sassfully compensated
for the disturbance caused by this motion, thanks to the ¥¢r®/ Y7 in Eq. 41.

Figures 5(c) and 5(d) show the valuesi¢fandY;. Observe thaf varies in a
narrow range from approximately21s to 0.233s even though the robot is making
large changes in its configuration. This is a property of tt#ot mechanism, and
will vary from one robot to the next. However, for most balewgcrobots it will
typically be the case th&f. does not vary very much. This suggests that assuming
a constant value fdf,. could be a good approximation.

For the first 13.5 seconds, varies in a range from approximately 26 to 33.
However, at the point wherg, is redefined, it jumps to 282, and then rises to 311
and drops to 88 over the course of the final ramp and its ovetsBo for the first
13.5s the plant model is only slightly nonlinear, with the two gaivarying in a
narrow range, but then the situation changes wjes redefined.

The explanation can be found in Fig. 5(e), which plots theei¢} gains of joints
2 and 3 along with their difference, which is the velocityrgaf the motion freedom
q2—qs [6]. For the firstl3.5s Gy (y2) = G+ (gz2); butthenys is redefined, and for the
remaining timeG (y2) = Gy (q2) — G+ (g3). As G+ (y2) appears in the denominator
of Eq. 24, this accounts for the large changéin

So from this brief analysis we can conclude the following: tbbot is generally
well-behaved, and the plant model is only slightly nonlineg until the beginning
of the final ramp. But then the balance controller is given gpeeially bad new
definition ofys: a motion that has almost no effect on the CoM (i.e., a vejagdin
close to zero). So the final ramp is an especially difficult otand to follow, and
that is why the controller does not track this ramp as acelyais the first ramp.
Without an analysis of the physics of the balancing prodessnot at all obvious
why the tracking of the final ramp is not as good as the first.
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6 Conclusion

This paper has presented a new model of the physical protdsdancing by a
general planar robot. The essential parameters of the 'sdtaiancing behaviour
are reduced to just two numbers, plus a third number to destine influence of all
other movements on the balancing behaviour. All three nusht&n be computed
efficiently using standard dynamics algorithms. The mode&tgrise to a simple
balance controller that allows the robot to balance whildquening other motions;
and simulation results are presented showing the contmoléking a triple pendu-
lum perform a variety of large, fast movements while mamitag its balance. The
controller allows complete freedom in choosing which moeets are to be used
for balancing and which for other tasks.

As planar balancing is a solved problem, the contributiothisf paper is to sim-
plify the problem and its solution without loss of genesgldnd to present an ap-
proach to balancing that appeals more to the physical psarfdsalancing and less
to the control theory. Clearly, the ultimate objective israger theory of balancing
in 3D, and a first step in that direction appears in [1, 2].

Acknowledgements The work presented here owes much to the work of Morteza Azadea
scribed in [1].

Appendix

This appendix proves the result that = s;fhy(i), wherep; ands; are the mo-
mentum variable and axis vector of joitandh,, ;) is the total momentum of the
subtree or self-contained subsystem consisting of haahygl its descendants. A self-
contained subsystem, in this context, is defined to be a stdysyin which every
kinematic loop that involves at least one body in the sulesyss entirely contained
within the subsystem. In general; andh, ;) will be spatial vectors. However, if
the whole system is planar then they may instead be plantorgec

Consider a kinematic tree consistingMfbodies and joints numbered frohto
N according to a regular numbering scheme. Without loss ofiggity, we assume
that every joint has only a single degree of freedom (DoF)¢clvimeans that every
multi-DoF joint has already been replaced by a kinematioadjuivalent chain of
single-DoF joints connected by massless bodies, and teaethxtra bodies and
joints are already included iN.

Let p andg denote the joint-space momentum and velocity vectors ofrte
or the spanning tree if there are kinematic loops. By definjtthe two are related
by the equation

p=Hg, (44)

whereH is the joint-space inertia matrix. This implies that
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N

= Hii;. (45)
j=1

The definition ofH for a general kinematic tree with single-DoF joints is

S; I()Sj if i € v(j)
H;j =< siL,;s; if jev(i) (46)
0 otherwise

wheres; is the joint axis vector (i.e., joint motion subspace vectdijoint ¢, I; is
the inertia of bodyi (spatial or planar as appropriate};) is the set of all bodies in
the subtree beginning at bodyandI, ; = deu(z 1;.

Let %(7) be the set of all bodies on the path between bodgd the base (body
0), excluding both body and the base, and le{i) = (i) U {i} be the same set
including bodyi. If we use the terms ‘ancestor’ and ‘descendant’ in an inotus
sense, meaning that bodys both an ancestor and a descendant of itself, and use
the term ‘proper ancestor’ in an exclusive sense, then tse &9, (i) andz(:) can
be seen to be the sets of descendants, ancestors and propstioas) respectively,
of bodyi. k(i) is also the set of joints on the path between bodgd the base.

We now rewrite Eq. 46 as follows:

Sl-TIl,(i)Sj if j €R(2)
Hij = S;-FIU(j)Sj if j € Z/(Z) (47)
0 otherwise

which makes it clear thalf;; is nonzero only ifj € %(i) or j € v(i). Substituting
Eq. 47 into Eqg. 45 gives

Z I,s;q; + Z I, sjqj

JER(7) jev(d)

Z Z Iij(jjJr Z Z Iijqj)
JER(i) kev (i) Jev (i) kev(j)

=sT( Y N nsigg+ Y. Y Lisiy)

ke (i) jER (D) ke (i) jev(i)nm(k)

:s;r Z Ik Z quj- (48)

kev(i)  jer(k)

The step from the second to the third line works as folloWs:., ;) >_yc.(j) IS
the sum over allj, k pairs wherej is a descendant afandk is a descendant gf,
whereas ~, ., i) 2 jeu(i)nn(x) 1S the sumover alj, k pairs where: is a descendant
ofiandjis both adescendant bnd an ancestor &f but these two sets of pairs are
the same. The step from the third to the fourth line explbiésfact thaw (i) N x(k)

is the set of all ancestors of bodyfrom i onwards, whereag(7) is the set of alll
ancestors of body prior to 7, so the union of the two setsigk).
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Now letwvy, be the velocity of body, lethy, = I, v, be the momentum of body;
andleth, ;) = Zk@(i) h;. be the total momentum of the subtree beginning at body
1. The velocity of any body in a rigid-body system is the sumhaf joint velocities
along any one path between that body and the base, sozjeﬁ(k) s;q;. We can
now further simplify Eq. 48 as follows:

pi = s} Z Lo, = s] Z h, = SiThV(i)v (49)
kev (i) kew (i)

which establishes the desired result for the case of a kitiettnae. If the system
contains kinematic loops then we find that Eq. 49 no longedh&br all joints,
but does still hold for any joint that is not involved in anynkimatic loop. This is
equivalent to the condition stated at the beginning thasthesystem consisting of
the bodies in/(i) be self-contained.
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