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Fig. 7: 10 launch trajectories to unadjusted launch angle 0.166 rad,
adjusted angle 0.147 rad (red). Reference in blue, trajectories in grey.
Duration of leg motor rotation shown as light grey.

Fig. 8: 10 jumps testing accuracy at nominal distance 32.6 cm;
achieved mean 35.1 cm, standard deviation 1.6 cm. a) Launch stance
trajectory. b) Resulting flight trajectories (desired in blue).

The achieved angles had a mean of 0.137 rad and standard
deviation of 0.010 rad. The achieved launches had standard
deviations in Vv, of 0.010 m/s and vy of 0.023 m/s. The mean
jump distance was 0.351 m and its standard deviation was
0.016 m. Table II compares this performance to flight-phase
control in [36] which could not land and stop.

Attitude error was similar for both stance-phase control
and flight-phase control; liftoff attitude error of the balance
controller in this work and touchdown attitude error of the
aerial attitude control in [36] both had standard deviations of
0.010 rad. Therefore, lower sensitivity to attitude error may
explain the higher accuracy of stance control.

The stance-phase control achieves jump precision between
1.6 and 5.8 times better than the flight-phase control, in reason-

Fig. 9: Salto-1P leaps to and lands on consecutive narrow targets
marked on the floor.

able agreement with the approximate relationships described
in section II-G. The launch angle error for the full range of
jumps in IV-A was worse than for the 10 moderate jumps in
IV-B due mostly to lower accuracy at negative angles and two
outliers at a = 30.

C. Multiple jumps to targets

Chaining together consecutive launches and landings, Salto-
1P can land on smaller targets than was possible using flight-
phase control in [36]. In Fig 9, the ground station computer
uses motion capture to track Salto-1P and commands liftoff
velocities that direct Salto-1P to points at O cm, 10 cm, and
40 cm. Starting at -23.4 cm, Salto-1P jumped to 0.8 cm, 11.0
cm, and 38.0 cm for errors of 0.8 cm, 1.0 cm, and -2.0 cm.

V. CONCLUSION

We demonstrate accurately targeted jumping and balanced
landing on a narrow support. First, this work demonstrates
higher precision jumping to a target than that achieved in [36].
The higher precision is likely due to the lower sensitivity to
angle error associated with stance phase leaning control of
launch compared to flight-phase attitude control of SLIP-like
bouncing.

Second, we demonstrate balanced landing on a narrow
support and present approximate limits on touchdown angle
error and velocity estimate error in which balanced landing is
possible. The tight error limits reveal why it is difficult to land
a jump like a gymnast on a small base of support. This landing
ability provides a transition from running to standing still and
allows perching on small footholds. High-performance leaning
control is critical to both accurate jumping and balanced
landing since both depend on control of the robot’s angle.

There are several areas for future improvement. Derivations
of touchdown angle and balance limits assume small angle
approximation and ignore leg inertia which make them inexact.
Salto-1P can launch and land using only onboard processing
and sensing, but it is less reliable without motion capture due
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to the tight error limits. Instead of a line foot, Salto-1P can
also land on a point foot, but its aerodynamic thrusters struggle
since they were sized for aerial reorientation. More powerful
roll actuation and improved velocity sensing can enable fully-
autonomous jumping and stopping on more varied terrains.

There are also many possible future extensions to this work.
The presented control can jump up or down ledges but this was
not demonstrated for brevity. The selected leaning trajectory
cannot exceed the maximum recovery angle (12.5° for Salto-
1P). Other strategies could tilt and jump farther by forgoing
zero angular velocity on liftoff with a potential tradeoff
between accuracy and distance. Integrating leaning control
with earlier flight-phase hopping control and coordinating out-
of-plane motions in stance could produce 3D motions faster
than stance-phase launching and more accurate than SLIP-like
bouncing. Investigations of difficult surfaces with compliance
and sliding can help expand operation out of the lab.
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