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Abstract

This paper presents a new method for calculating operational-space inertia ma-
trices, and other related quantities, for branched kinematic trees. It is based on
the exploitation of branch-induced sparsity in the joint-space inertia matrix and the
task Jacobian. Detailed cost figures are given for the new method, and its efficacy is
demonstrated by means of a realistic example based on the ASIMO Next-Generation
humanoid robot. In this example, the new method is shown to be 6.7 times faster
than the basic matrix method, and 1.6 times faster than the efficient low-order algo-
rithm of Rodriguez et al. Furthermore, cost savings of more than 50,000 arithmetic
operations are obtained in the calculation of the inertia-weighted pseudoinverse of
the task Jacobian and its null-space projection matrix. Additional examples are
considered briefly, in order to further compare the new method with the algorithm
of Rodriguez et al.

1 Introduction

If a robot has a multiplicity of limbs, then it has a branched kinematic structure. An
automatic consequence of these branches is that the robot’s joint-space inertia matrix
exhibits a sparsity pattern (a pattern of zero-valued elements) that can be exploited to
reduce the cost of calculating the robot’s forward dynamics (Featherstone, 2005). The
present paper shows how to extend this idea to operational-space dynamics and control.

Starting with the equation Λ−1 = JH−1JT, where H and Λ are the joint-space and
operational-space inertia matrices and J is the task Jacobian, this paper shows how to
exploit the sparsity in H and J so as to greatly accelerate the calculation of Λ−1. Cost
figures are given for the new method, and its efficacy is demonstrated using an example
based on the ASIMO Next-Generation humanoid robot. In this example, the new method
is 6.7 times faster than the basic method (i.e., evaluating JH−1JT without exploiting
sparsity), and it is 1.6 times faster than an optimized version of the recursive, low-order
algorithm for Λ−1 described in Rodriguez et al. (1992).

0The published version of this paper appears in Int. J. Robotics Research, 29(10):1353–1368, 2010.
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This paper also considers two other matrices: the dynamically-consistent generalized
inverse Jacobian, J̄ , which is the inertia-weighted pseudoinverse of J , and the null-space
projection matrix, N , that is derived from J and J̄ . Both can be calculated more ef-
ficiently by exploiting sparsity. In the ASIMO example, the costs of calculating these
matrices are each reduced by more than 50,000 floating-point arithmetic operations, mea-
sured relative to the basic matrix method.

Operational-space dynamics was originally applied to serial robots having a single
end-effector. For this kind of robot, the obvious choice of operational space is the six
degrees of motion freedom of the end-effector. In this case, Λ is only a 6 × 6 matrix,
and it can be obtained via the formula Λ−1 = JeH

−1JT
e , where Je is the end-effector

Jacobian. However, the calculation of Λ by this method has a complexity of O(n3), and
this observation has motivated the development of several O(n) algorithms for this special
case (Kreutz-Delgado et al., 1992; Lilly, 1993; Lilly and Orin, 1993).

If a robot has a branched kinematic structure, as is the case for a humanoid or legged
robot, then it is necessary to use a more general operational space that depends on the
motions of more than one body. In this case, the above formula still applies, provided one
uses the task Jacobian instead of the end-effector Jacobian (Russakow et al., 1995). The
complexity of calculating Λ by this method is O(n3 + m3), where m is the dimension of
operational space. Alternatively, one can use the low-order recursive algorithm invented
by Rodriguez et al. (1992) for calculating Λ−1. An optimized version of this algorithm,
together with cost figures, appears in Appendix B of this paper. The complexity of this
algorithm is O(n + m2d), where d is the depth of the connectivity tree. An extra O(m3)
is then required to calculate Λ from Λ−1. A very similar algorithm was subsequently
developed by Chang and Khatib (1999, 2000, 2001), and the difference between these two
algorithms is explained in Appendix B.

The approach taken in this paper is to accelerate the calculation of JH−1JT by
exploiting the sparsity in H and J . The computational complexity of the new method is
O(nd2 + md2 + m2d), which is better than the basic method but worse than Rodriguez’
algorithm. Thus, Rodriguez’ algorithm will inevitably be faster for sufficiently large values
of d. Nevertheless, the new method is easily the fastest on the ASIMO example, and also
on several more examples considered at the end of Section 9. These results show that the
new method is likely to be the best choice for most humanoids and similar robots.

The rest of this paper is organized as follows. Sections 2 and 3 explain how connectivity
is described, and how branches cause branch-induced sparsity. Section 4 presents a brief
summary of operational-space dynamics, sufficient to define the matrices Λ, J̄ and N .
Section 5 describes the sparsity pattern in the task Jacobian. Section 6 shows how Λ−1

can be factorized as Λ−1 = Y Y T or Λ−1 = YDY
T

d , where Y , Yd and YD all have the
same sparsity pattern as J . Section 7 explains the close connections between Section 6
and the innovations factorization of Rodriguez et al. Finally, Section 8 presents the new
sparse-matrix algorithms; and Section 9 presents a table of computational cost formulae,
an analysis of computational complexity, and the actual costs incurred in the ASIMO
example.
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Figure 1: A kinematic tree (a) and its connectivity graph (b)

2 Describing Connectivity

A rigid-body system can be regarded as a collection of rigid bodies connected together
by joints. The connectivity of such a system can be described by means of a graph in
which the nodes represent the bodies and the arcs represent the joints. We use the term
kinematic tree to describe any rigid-body system for which the connectivity graph is a
tree. In practical terms, a kinematic tree is a mechanical system without kinematic loops.
An example of a kinematic tree is shown in Figure 1(a), and its connectivity graph is
shown in Figure 1(b).

In general, a kinematic tree will consist of N bodies, N joints and a fixed base. We
treat the fixed base as a special body, so the connectivity graph will contain N arcs and
N + 1 nodes. If the kinematic tree describes a mobile robot, then one body in the robot
is identified as the floating base, and a six-degree-of-freedom (6-DoF) joint is inserted
between the fixed and floating bases. This joint is not physically a part of the robot, but
the six joint variables associated with it are necessary for describing the robot’s location.
If the kinematic tree describes a collection of mobile robots, then each one has its own
floating base and 6-DoF joint.

The bodies, joints, nodes and arcs are numbered according to the following standard
numbering scheme. First, the node representing the fixed base is assigned the number 0,
and is regarded as the root node of the tree. Next, the remaining nodes are numbered
consecutively from 1 in any order such that each node has a higher number than its
parent. The arcs are then numbered such that arc i connects between node i and its
parent. Finally, the bodies and joints are given the same numbers as their corresponding
nodes and arcs.

Once the bodies have been numbered, the connectivity of a kinematic tree can be
described by its parent array, λ. This is an N -element array such that λ(i) is the body
number of the parent of body i. The parent array for the example in Figure 1 is λ =
[0, 1, 1, 2, 2, 3, 3], meaning that λ(1) = 0, λ(2) = 1, and so on. The node-numbering rules
ensure that λ has the property 0 ≤ λ(i) < i, which is exploited in many algorithms.

Given λ, the following sets can be defined, which describe various properties of the
connectivity graph:

µ(i): the set of children of body i, defined by µ(i) = {j|λ(j)=i};

κ(i): the set of joints that support body i, defined by κ(i) = {i} ∪ κ(λ(i)) and κ(0) = ∅
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(the empty set); and

ν(i): the set of bodies supported by joint i, defined by ν(i) = {j|i∈κ(j)}.

A joint is said to support a body if it lies on the path between that body and the root
node. Thus, κ(i) is the set of all joints on the path between body i and the root, and ν(i)
is the set of all bodies in the subtree starting at body i. These sets have various properties
that follow from their definitions. For example, j ∈ κ(i) implies i ∈ ν(j) and vice versa,
and κ(i) ∩ ν(j) 6= ∅ if and only if j ∈ κ(i). For the connectivity tree in Figure 1, we have
µ(1) = {2, 3}, ν(2) = {2, 4, 5}, κ(4) = {1, 2, 4}, µ(5) = ∅, and so on. A kinematic tree is
branched if at least one set µ(i) contains more than one element.

Most mainstream dynamics algorithms can be couched in terms that use only λ.
Nevertheless, µ(i), ν(i) and κ(i) can be useful in the mathematical descriptions of these
algorithms, and in the analysis of their properties.

3 Branch-Induced Sparsity

The phenomenon of branch-induced sparsity refers to a pattern of zeros appearing in
certain important matrices as a direct consequence of branches in the kinematic tree.
By exploiting these zeros, it is possible to reduce the cost, and even the computational
complexity, of some dynamics calculations. For example, it is generally thought that
the calculation of a robot’s forward dynamics via the joint-space inertia matrix (i.e., via
Eq. 1 below) is an O(n3) calculation, where n is the number of joint variables; but its
true complexity is only O(nd2), where d is the depth of the connectivity tree. This lower
complexity can be achieved by exploiting branch-induced sparsity.

Branch-induced sparsity was first studied in the joint-space inertia matrix, which is
the coefficient matrix H in the joint-space equation of motion

τ = Hq̈ +C . (1)

(τ and q̈ are vectors of joint force and acceleration variables, and C is a vector of Coriolis,
centrifugal and gravity terms.) The formula for H is

Hij =







ST
i I

c
iSj if i ∈ ν(j)

ST
i I

c
jSj if j ∈ ν(i)

0 otherwise,
(2)

where Ic
i is the composite-rigid-body inertia of the set of bodies in ν(i), and Si is the

motion subspace matrix of joint i (also known as the free modes matrix of joint i). Ic
i

is a 6 × 6 matrix, and Si is a 6 × ni matrix, where ni is the DoF of joint i. Given that
the total number of joint variables is n, it follows that

∑N
i=1 ni = n, and that H is both

an n × n matrix and an N × N block matrix composed of blocks Hij having dimensions
ni × nj . A derivation of Eq. 2 can be found in Featherstone (2008).

The third case in Eq. 2 is the one that gives rise to branch-induced sparsity. It states
that Hij will be zero for every i and j such that joint i does not support body j and joint
j does not support body i. This condition will be true if and only if bodies i and j lie on
separate branches of the connectivity graph, hence the name ‘branch-induced sparsity’.
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Figure 2: Branch-induced sparsity pattern in a symmetric matrix (a) and a lower-
triangular matrix (b) for the kinematic tree in Figure 1

To give a pictorial example, Figure 2(a) shows the sparsity pattern (i.e., the pattern of
zeros) that would appear in H as a consequence of the branches in the kinematic tree
in Figure 1; and Figure 2(b) shows a lower-triangular matrix having the same sparsity
pattern below the main diagonal. In both cases, the grey areas denote nonzero elements1

or submatrices. We regard both of these patterns as examples of branch-induced sparsity.
A formal definition of branch-induced sparsity can now be stated as follows. For a

given λ, which can be any array of integers such that 0 ≤ λ(i) < i for all i,

1. a symmetric matrix H , having elements Hij , exhibits branch-induced sparsity if
nonzero values appear only in those elements satisfying j ∈ κ(i) ∪ ν(i); and

2. a lower-triangular matrix L, having elements Lij , exhibits branch-induced sparsity
if nonzero values appear only in those elements satisfying j ∈ κ(i).

The definition can be extended to block matrices by replacing ‘element’ with ‘submatrix’.
For convenience, we define SPD(λ) and L(λ) to be the sets of symmetric positive-definite
and nonsingular lower-triangular matrices, respectively, having the branch-induced spar-
sity pattern defined by λ. Note that the pattern shown in Figure 2(b), or permutations
thereof, has been known for a long time in the dynamics literature. For example, it can
be seen in the expression for φ on p. 35 of Rodriguez et al. (1992), and in Figure 5.9 in
Wittenburg (1977).

It can be shown that L(λ) forms a group under matrix multiplication, and a proof
is given in Appendix A. One immediate consequence is that branch-induced sparsity
patterns in lower-triangular matrices are preserved under both matrix multiplication and
inversion. This property is exploited in the sequel.

4 Operational-Space Dynamics

The equation of motion for a robot mechanism, expressed in operational space, can be
written in the form

ẍ = Λ−1F + β . (3)

In this equation, ẍ and F are operational-space acceleration and force vectors, respec-
tively, Λ−1 is the operational-space inverse inertia matrix, and β is an acceleration bias

1A nonzero element in a sparse matrix is one that is free to take any value, including zero. In effect,
‘nonzero’ means ‘not constrained to be zero’.
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vector, being the acceleration that would result if F were zero. Λ−1 is an m × m sym-
metric matrix, where m is the dimension of operational space, and the other quantities in
this equation are m-dimensional vectors. If Λ−1 is nonsingular then Eq. 3 can be inverted
to obtain the equation

F = Λẍ+ µ+ ρ , (4)

where µ is a vector of Coriolis and centrifugal force terms, ρ is a vector of gravitational
force terms, and

µ+ ρ = −Λβ .

In early works on the subject, operational space was typically defined to be the motion
space of the end-effector of a robot arm. However, in its general form, operational space
can be a function of the motions of any number of bodies in a general robot mechanism.

The relationship between Eqs. 1 and 3 is established via a task Jacobian, J , that maps
joint-space velocities to operational-space velocities according to

ẋ = Jq̇ . (5)

J is therefore an m × n matrix. This Jacobian also maps operational-space forces to
joint-space forces according to

τ = JTF . (6)

Given these equations, it can be seen that

Λ−1 = JH−1JT (7)

and
β = J̇ q̇ − JH−1C . (8)

Another matrix of interest is Khatib’s dynamically-consistent generalized inverse of
J , denoted J̄ , which is given by

J̄ = H−1JTΛ (9)

(assuming Λ−1 is invertible). This matrix is also the inertia-weighted pseudoinverse of
J , which means that q̇ = J̄ ẋ is the unique solution to Eq. 5 that minimizes q̇THq̇. In
addition to its use in operational-space control, this matrix has been used in redundancy-
resolution schemes to obtain motions that instantaneously minimize a robot’s kinetic
energy (Khatib, 1987; Hollerbach and Suh, 1987).

Yet another matrix of interest is the null-space matrix derived from J̄ , which defines
the dynamically-consistent null space of the robot mechanism—the space of joint forces
that cause no acceleration in operational space. This matrix is defined by

N = 1 − J̄J , (10)

and it is used in the equation of operational-space control,

τ = JTF +NTτ 0 , (11)

which computes the joint force command, τ , as the sum of a force that will cause a desired
acceleration in the operational space and a force that will cause an acceleration only in
the null space. τ 0 can be any joint-space force vector, and NT projects it onto the null
space. For more information on operational-space dynamics, see Khatib (1987, 1995);
Khatib et al. (2004).
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5 Sparsity in the Task Jacobian

In this section, we construct a formula for the Jacobian having the form

J = RS , (12)

where S is a mapping from joint space to the space of spatial (6D) velocities of all N
bodies (a 6N -dimensional vector space), andR maps from this space to operational space.
Thus, S is a 6N × n matrix and R is m × 6N . It will be shown that S has the same
sparsity pattern as an element of L(λ), although it is not literally a member of this group
because it is rectangular. By placing some restrictions on the definition of operational
space, it can be arranged that R preserves the sparsity in the rows of S, so that each row
in J has the same sparsity pattern as a row appearing in S.

Let vi be the spatial velocity of body i in the robot mechanism, and let vJi be the
spatial velocity across joint i, which is defined to be the velocity of body i relative to its
parent (i.e., vJi = vi − vλ(i)). By definition, vJi is given by the formula vJi = Si q̇i, where
q̇i is an ni-dimensional vector containing the velocity variables of joint i, and Si is the
joint’s motion subspace matrix, as mentioned in Section 3. We therefore have

vi = Si q̇i + vλ(i)

= Si q̇i + Sλ(i) q̇λ(i) + · · ·

=
∑

j∈κ(i)

Sj q̇j , (13)

which simply says that the velocity of body i is the sum of the velocities across each of
the joints on the path between the fixed base and body i. By collecting together these
equations for the individual body velocities, we obtain the following composite equation
describing the velocity of every body in the tree:

v = Sq̇ , (14)

where

v =











v1

v2
...
vN











, q̇ =











q̇1

q̇2
...
q̇N











, S =











S11 0 · · · 0
S21 S22 · · · 0
...

...
. . .

...
SN1 SN2 · · · SNN











and

Sij =

{

Sj if j ∈ κ(i)
0 otherwise.

(15)

v is therefore a 6N -dimensional vector, and S is a 6N×n matrix. S is also an N×N block
matrix composed of rectangular blocks Sij having dimensions 6×nj. If it is important to
identify what coordinate system is being used, then add a leading superscript; thus, iSj

is the motion subspace of joint j expressed in link i coordinates, and so on.
Equation 15 implies that S has the same sparsity pattern, expressed at the block-

matrix level, as an element of L(λ). For example, the value of S for the kinematic tree in
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Figure 1 is

S =





















S1 0 0 0 0 0 0
S1 S2 0 0 0 0 0
S1 0 S3 0 0 0 0
S1 S2 0 S4 0 0 0
S1 S2 0 0 S5 0 0
S1 0 S3 0 0 S6 0
S1 0 S3 0 0 0 S7





















. (16)

Having obtained a formula for S in Eq. 12, the next step is to find a formula for R. In
order to preserve as much sparsity as possible, we assume that each element in ẋ depends
on the velocity of a single body in the robot mechanism, and introduce an m-element array
of body numbers, b, such that b(i) is the number of the body upon which ẋi depends. As
the relationships between velocities are linear, it follows that ẋi can be expressed in the
form

ẋi = Rivb(i) , (17)

where Ri is a 1 × 6 matrix. Collecting the equations for each variable, we have

ẋ = Rv , (18)

where

R =







R11 · · · R1N
...

. . .
...

Rm1 · · · RmN







and

Rij =

{

Ri if j = b(i)
0 otherwise.

(19)

Thus, R is a sparse m×N block matrix composed of submatrices Rij having dimensions
1 × 6, with the property that exactly one block on each row is nonzero.

To give a concrete example of the sparsity patterns that arise, suppose that an oper-
ational space is defined for the kinematic tree in Figure 1 such that m = 2 and b = [4, 7].
In this case, we will have

R =

[

0 0 0 R1 0 0 0
0 0 0 0 0 0 R2

]

and

J =

[

R1S1 R1S2 0 R1S4 0 0 0
R2S1 0 R2S3 0 0 0 R2S7

]

.

Observe that the sparsity patterns in the two rows of this matrix are the same as the
patterns in rows 4 and 7 of Eq. 16. In general, submatrix Jij of the task Jacobian is
nonzero if and only if j ∈ κ(b(i)).
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6 Sparse Factorization of Λ−1

It was shown in Featherstone (2005) that any H ∈ SPD(λ) can be factorized into H =
LTL using the LTL factorization, or into H = LT

dDLd using the LTDL factorization,
where L is lower-triangular, D is diagonal, Ld is unit-lower-triangular, and L,Ld ∈ L(λ).
Combining these factorizations with the formula in Eq. 7 yields the following factorizations
of Λ−1:

Λ−1 = J(LTL)−1JT

= JL−1(JL−1)T

= Y Y T , (20)

where
Y = JL−1 , (21)

and

Λ−1 = J(LT
dDLd)

−1JT

= JL−1
d D

−1(JL−1
d )T

= YdD
−1Y T

d

= YD Y
T

d , (22)

where
Yd = JL−1

d , YD = YdD
−1 . (23)

These factorizations allow a more efficient calculation of Λ−1 than is possible using Eq. 7
and standard matrix methods. The reasons for the improved efficiency are:

1. the LTL and LTDL factorizations exploit the sparsity in H ,

2. L,Ld ∈ L(λ),

3. Y , Yd and YD have the same sparsity pattern as J ,

4. the calculation of Y , Yd and YD can be accelerated by exploiting sparsity, and

5. the calculation of Λ−1 from either Y or Yd and YD can be accelerated by exploiting
sparsity.

Items 1 and 2 are covered in Featherstone (2005), while items 3 to 5 are the subject of
this paper. Item 3 is a more general version of a result implicit in Rodriguez et al. (1992),
and is therefore proved below.2 Note that the presence of sparsity in Y , Yd and YD means
that Eqs. 20 and 22 can be regarded as sparse factorizations of Λ−1.

2It is more general because it applies to a larger class of operational spaces, and because SPD(λ) and
L(λ) are larger than the sets of all possible joint-space inertia matrices and their triangular factors.
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Sparsity pattern of Y

For any K,L ∈ L(λ), the product KL−1 must also be an element of L(λ) because L(λ) is
a group. So KL−1 has the same sparsity pattern as K, which implies that the operation
of post-multiplication by L−1 has preserved the sparsity pattern in each individual row of
K. Now, each row in S has the same sparsity pattern as a row of an element of L(λ), so
the post-multiplication of S by L−1 will preserve the sparsity pattern in each individual
row, and therefore also in the matrix as a whole. Thus, the matrix SL−1 has the same
sparsity pattern as S. Finally, the sparsity pattern in a product of two sparse matrices is
determined by the sparsity patterns in the two multiplicands. As J is the product of R
and S, while Y is the product of R and SL−1, it follows that J and Y have the same
sparsity pattern. The argument extends trivially to Yd and YD.

Observe that this proof did not rely on any special property of R, and is therefore
valid for any operational space. However, the utility of this result depends on the amount
of sparsity in Y , and that does depend on the properties of R. The purpose of the
restrictions described in Section 5 is partly to maximize the total amount of sparsity, and
partly to give J and Y a sparsity pattern that is easily exploited using simple software,
such as the algorithms to be described in Section 8.

7 Innovations Factorization

In this section, we temporarily adopt the symbol M for the joint-space inertia matrix,
and let H stand for the block-diagonal matrix diag(ST

i ). In a series of ground-breaking
papers, Rodriguez and his co-workers showed that the joint-space inertia matrix of a robot
mechanism could be expressed in the following form, which they called the innovations
factorization:

M = (1 +HφK)D(1 +HφK)T. (24)

They also showed that
(1 +HφK)−1 = 1 −HψK , (25)

which implies
M−1 = (1 −HψK)TD−1(1 −HψK) . (26)

Although their first papers dealt only with unbranched chains, the theory was extended
to general kinematic trees in Rodriguez et al. (1992). The equations above are Eqs. 28 to
30 in that paper. The matrix D is n × n and block diagonal, having one block per joint;
Hφ is the transpose of the matrix S in Eq. 14; and K is a 6N ×n block-diagonal matrix.

The Rodriguez team routinely numbered their bodies from tip to base, which is the
reverse of the usual numbering order. Using their numbering scheme, the factor 1+HφK
is block lower triangular. However, if we use the numbering scheme described in Section
2 then this matrix is upper triangular. Thus, the right-hand side of Eq. 24 is the product
of an upper-triangular matrix with a diagonal matrix and a lower-triangular matrix. It
is therefore very closely related to the LTDL factorization. In fact, the relationship is so
close that if every joint has only a single degree of freedom then the two factorizations
are numerically identical and we can equate Ld with (1 +HφK)T.

The sparsity pattern in 1 +HφK is the same as the pattern in φ, which in turn is
the same as the pattern in ST; so the factor 1 +HφK clearly exhibits branch-induced
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sparsity. Furthermore, the sparsity pattern in 1 −HψK is the same as the pattern in
ψ, and it is shown in Rodriguez et al. (1992) that ψ has the same sparsity pattern as φ.
Thus, Rodriguez et al. have already shown that the sparsity in their triangular factor is
preserved under inversion—a result that mirrors the one in Appendix A.

Yet another result obtained by Rodriguez et al. is that the inverse of the operational-
space inertia matrix can be expressed as

Λ−1 = BTψTHTD−1HψB , (27)

where BT is the pick-off matrix, which is a special case of R in Eq. 12. (See Eq. 34 in
Rodriguez et al. (1992), and bear in mind that the quantity we call Λ−1 is called Λ in
their paper.) This, in turn, implies the following equations for Y and Yd in Eqs. 20 and
22:

Yd ≈ BTψTHT (28)

Y ≈ BTψTHTD−1/2. (29)

These equations will be exact if every joint has only a single degree of freedom. Other-
wise, they represent only an approximate correspondence, since the left-hand sides are
triangular but the right-hand sides are only block-triangular. Nevertheless, the sparsity
pattern of Y and Yd can be deduced directly from these equations, since B, H and D
are all block-diagonal, and ψT has the same sparsity pattern as φT, which is the same
pattern as S.

From a mathematical point of view, the relationship between the innovations factor-
ization and the LTDL factorization is this: the latter is a numerical procedure that can be
applied to any symmetric, positive-definite matrix, whereas the former provides us with
a deeper and more powerful symbolic result, but is applicable only to joint-space inertia
matrices and other matrices having the same special structure.

From a computational point of view, the LTDL factorization is applied directly to a
known matrix in order to factorize it, but the innovations factorization provides us with
matrix-operator expressions for an unknown matrix, or the product of an unknown matrix
with a known vector, from which a recursive algorithm can be deduced for the purpose
of calculating the desired unknown quantity.

8 Algorithms

This section presents algorithms to calculate Jx and JTx for arbitrary vectors x, and
algorithms to calculate Y , Yd, YD, Y Y T and YDY

T
d . It also shows how to calculate J̄

and N efficiently using these algorithms. The LTL and LTDL algorithms are explained
in Featherstone (2005, 2008) and are not repeated here.

Expanded connectivity graph

The algorithms in this section operate directly on the elements of J , L, etc., rather than
on their submatrices. They therefore require element-oriented versions of λ and b, which
we shall call λe and be. (b is defined just before Eq. 17.) Conceptually, λe and be can be
regarded as the parent and body-number arrays for an expanded version of the original
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Figure 3: Expanding a connectivity graph

for i = 1 to n do
λe(i) = i − 1

end
map(0) = 0
for i = 1 to N do

map(i) = map(i − 1) + ni

end
for i = 1 to N do

λe(map(i − 1) + 1) = map(λ(i))
end
for i = 1 to m do

be(i) = map(b(i))
end

Figure 4: Algorithm to calculate λe and be from λ, b and ni

connectivity graph, in which each joint having more than one DoF is replaced by a chain
of single-DoF joints. Another useful quantity is κe(i), which is the support set for node i
in the expanded connectivity graph. These sets are used in the analysis and cost figures,
but not directly in the algorithms.

The idea of an expanded connectivity graph is illustrated in Figure 3. In this example,
joint 2 in the mechanism from Figure 1 has 3 DoF, while the other joints each have only
a single DoF. The expanded connectivity graph is therefore obtained from the original by
replacing arc 2 with a chain of three arcs. This alteration implies the addition of two new
nodes, and it necessitates a renumbering of the nodes and arcs. The latter is performed
in such a manner that arc i in the expanded graph refers specifically to element i in q̇ (or
q̈ or τ ).

An algorithm to calculate λe and be from λ and b is presented in Figure 4. It is
an extension of an algorithm appearing in Featherstone (2008) that calculates only λe.
Note that λe is a constant, and be changes only when the task space is redefined, so the
calculations in Figure 4 need to be performed only infrequently. More on this topic can
be found in Featherstone (2005, 2008).
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for i = 1 to m do
j = be(i)
yi = Jij xj

j = λe(j)
while j 6= 0 do

yi = yi + Jij xj

j = λe(j)
end

end

Figure 5: Algorithm to calculate y = Jx from J and x

y = 0
for i = 1 to m do

j = be(i)
while j 6= 0 do

yj = yj + Jij xi

j = λe(j)
end

end

Figure 6: Algorithm to calculate y = JTx from J and x

Calculation of Jx and JTx

Figures 5 and 6 show a pair of algorithms to calculate Jx and JTx, respectively, for
arbitrary vectors x. (x here is just the name of the vector being multiplied—it should not
be confused with the vector of operational-space coordinates.) Note that these algorithms
can also calculate Y x, Y Tx, Yd x, and so on, because Y , Yd and YD all have the same
sparsity pattern as J . Also, these algorithms can easily be extended to calculate JX or
JTX, where X is a dense matrix, by replacing each instance of xi or xj with row i or j
of X, and each instance of yi or yj with row i or j of the result matrix.

Both algorithms use the same basic strategy, which is to iterate over only the nonzero
elements of J . This strategy works as follows. If y = Jx then the general formula for an
element of y is

yi =

n
∑

j=1

Jij xj .

However, we know that Jij 6= 0 only if j ∈ κe(be(i)), so the formula for yi can be simplified
to

yi =
∑

j∈κe(be(i))

Jij xj . (30)

The algorithm for Jx implements this formula directly, and the algorithm for JTx im-
plements a very similar formula in which yj and xi replace yi and xj . In both cases, the
inner while loop is iterating backwards over the elements of κe(be(i)).

In the interests of balance, the algorithms in Figures 5 and 6 should be compared
with the well-known algorithm for dealing with sparse matrices, which is to test each
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y = 0
for i = 1 to m do

for j = 1 to n do
if Aij 6= 0 then

yi = yi + Aij xj

end
end

end

Figure 7: Basic algorithm to calculate y = Ax where A is sparse

Y = J

for k = 1 to m do
i = be(k)
while i 6= 0 do

Yki = Yki/Lii

j = λe(i)
while j 6= 0 do

Ykj = Ykj − Yki Lij

j = λe(j)
end
i = λe(i)

end
end

Figure 8: Algorithm to calculate Y = JL−1 from J and L

element against zero before using it. Figure 7 shows an implementation of this algorithm.
The advantages of this algorithm, relative to those in Figures 5 and 6, are that it works
with any sparsity pattern, that it does not need to be told what the pattern is, and that
incrementing a loop variable is cheaper than calculating j = λe(j). Its disadvantage is
that it accesses and tests every element of the given matrix, rather than accessing only
the nonzero elements. If this algorithm is applied to the Jacobian in the ASIMO example
given later in this paper, then it will perform exactly the same number of floating-point
arithmetic operations as the algorithm in Figure 6, but it will access all 960 elements of
the Jacobian rather than only the 312 nonzero elements.

Calculation of Y , Yd and YD

An algorithm to calculate Y = JL−1 directly from J and L is shown in Figure 8. It
consists of a standard back-substitution algorithm that has been modified to exploit the
sparsity in both J and L. The first step is to copy J to Y . This is necessary because the
rest of the algorithm works in situ. The index k iterates over the rows of Y ; for each k,
index i iterates over the elements of κe(be(k)); and, for each i, index j iterates over the
elements of κe(λe(i)). In both while loops, the iteration proceeds in reverse numerical
order, but this is only important for the outer while loop. In effect, the outer while loop
is skipping over the zeros on row k of Y , while the inner while loop is skipping over the
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Yd = J

YD = 0
for k = 1 to m do

i = be(k)
while i 6= 0 do

j = λe(i)
while j 6= 0 do

Ydkj = Ydkj − Ydki Ldij

j = λe(j)
end
YDki = Ydki/Dii

i = λe(i)
end

end

Figure 9: Algorithm to calculate Yd = JL−1
d and YD = YdD

−1 from J , Ld and D

zeros on row i of L.
An algorithm to calculate Yd = JL−1

d and YD = YdD
−1 directly from J , Ld and D

is shown in Figure 9. This algorithm differs from the one in Figure 8 in only three places.
First, a line has been added near the top to initialize YD to zero. This line is only necessary
if YD is to be accessed by software that does not know about its sparsity pattern, as the
code in the for loop will only set the nonzero elements. Second, a line has been added
near the bottom of the outer while loop to calculate each nonzero element of YD as soon
as the corresponding element of Yd has been calculated. Third, the line at the top of the
outer while loop in Figure 8, which divides Yki by Lii, has no counterpart in Figure 9
because Ldii = 1 for all i. It just so happens that the number of calculations saved by
not having to divide Ydki by Ldii exactly equals the number of extra calculations needed
to calculate YD, so the cost of this algorithm is identical to the cost of the algorithm in
Figure 8.

Calculation of Λ−1

An algorithm to calculate Λ−1 = Y Y T is shown in Figure 10. It can be adapted to
calculate Λ−1 = YD Y

T
d simply by replacing each instance of Yik Yjk with YDik Ydjk. This

implies that the cost of calculating Λ−1 from YD and Yd is the same as the cost of
calculating it from Y . As Λ−1 is symmetric, only the lower triangle is calculated. If the
upper triangle is needed then it can be copied from the lower triangle.

This algorithm is just a standard matrix multiplication that has been adapted to skip
over the zeros in Y . In general, the formula for an element of Λ−1 is

Λ−1
ij =

n
∑

k=1

Yik Yjk .

However, the term Yik Yjk will only be nonzero for those values of k that are elements
of both κe(be(i)) and κe(be(j)). Now, it can be shown that κe(be(i)) ∩ κe(be(j)) = κe(a),
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for i = 1 to m do
for j = 1 to i do

k = ancest(be(i), be(j), λe)
if k = 0 then

Λ−1
ij = 0

else
Λ−1

ij = Yik Yjk

k = λe(k)
while k 6= 0 do

Λ−1
ij = Λ−1

ij + Yik Yjk

k = λe(k)
end

end
end

end

Figure 10: Algorithm to calculate the lower triangle of Λ−1 = Y Y T

where a is the nearest common ancestor of be(i) and be(j); so the calculation of Λ−1
ij

simplifies to

Λ−1
ij =

∑

k∈κe(a)

Yik Yjk . (31)

The algorithm performs this calculation by first setting k = a and then iterating back-
wards over the elements of κe(a).

Line 3 of this algorithm calls a function, ancest, to calculate the nearest common
ancestor of be(i) and be(j). This function can be implemented using the following code
fragment, which calculates the nearest common ancestor to bodies p and q in a connectivity
tree defined by the parent array λ:

while p 6= q do
if p > q then

p = λ(p)
else

q = λ(q)
end

end

When the loop terminates, both p and q contain the result. As the values calculated by
ancest depend only on the connectivity, it is possible to calculate them in advance, store
them in a table, and replace line 3 with a table-lookup operation.

The case k = 0 in the if statement is only possible if the system described by λe

consists of multiple independent robots. In this case, Λ−1 will be block-diagonal with one
block per robot. If it is known in advance that λe describes a single robot then this case
can be ignored.
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operation cost (dense) cost (sparse)

Jx mnm + m(n − 1)a
∑m

i=1 dim + (di − 1)a

JTx mnm + (m − 1)na
∑m

i=1 di(m + a)

JL−1 mnd + 1
2
mn(n − 1)(m + a)

∑m
i=1 did + 1

2
di(di − 1)(m + a)

JL−1
d , YdD

−1 same as JL−1 same as JL−1

Y Y T 1
2
m(m + 1)(nm + (n − 1)a)

∑m
i=1

∑i
j=1 dijm + max(0, dij − 1)a

YD Y
T

d same as Y Y T same as Y Y T

L−1(Y TΛ) mn
(

(m + 1
2
(n − 1))(m + a) − a + d

)

m
(

D1 +
∑m

i=1 di

)

(m + a) + mnd

L−1
d (Y T

D Λ) mn
(

(m + 1
2
(n − 1))(m + a) − a

)

m
(

D1 +
∑m

i=1 di

)

(m + a)

1 − J̄J mn2
m + ((m − 1)n2 + n)a na + n

(
∑m

i=1 di(m + a)
)

where di = |κe(be(i))|, dij = |κe(ancest(be(i), be(j), λe))|, D1 =
∑n

i=1(|κe(i)| − 1)

Table 1: Computational cost formulae for the new algorithms

Calculation of J̄ and N

Assuming that Λ has already been calculated, J̄ can be calculated efficiently either from
the formula

J̄ = L−1 Y TΛ , (32)

or from
J̄ = L−1

d Y T
D Λ , (33)

depending on which factorization has been used. In both cases, the first step is to calculate
Y TΛ (or Y T

D Λ) using the algorithm for JTx, and the second step is to pre-multiply the
result by L−1 (or L−1

d ) using the back-substitution algorithms described in Featherstone
(2005, 2008). The cost of the first step is the same for both formulae, but it is slightly
cheaper to pre-multiply by L−1

d than by L−1.
N can be calculated directly from the formula in Eq. 10, but using the algorithm for

JTx to calculate JTJ̄T, which is the transpose of J̄J .

9 Computational Costs

Table 1 shows the computational cost formulae for the algorithms in Figures 5, 6, 8 and
10, as well as the costs of calculating J̄ via Eqs. 32 and 33, andN via Eq. 10. In each case,
the cost formula for performing the same calculation using standard matrix arithmetic
routines is also shown.

The symbols m, a and d in this table represent the costs of performing a single floating-
point multiplication, addition or division, respectively. Subtractions count as additions
for cost purposes; and the negations needed to calculate 1− J̄J have been ignored. The
expression |κe(· · · )| means the number of elements in the set κe(· · · ). For the calculation
of Y Y T, both formulae present the cost of calculating only the lower triangle of the
result.
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Figure 11: Connectivity graph of the ASIMO Next-Generation robot

operation cost (dense) cost (sparse)

H , C 7317m + 6219a

LTDL 780d + 10660m 334d + 1779m

+ 10660a + 1779a

Jx 960m + 936a 312m + 288a

JTx 960m + 920a 312m + 312a

JL−1 960d + 18720m 312d + 1872m

+ 18720a + 1872a

Y Y T 12000m + 11700a 2424m + 2124a

L−1
d (Y T

DΛ) 41760m + 40800a 15504m + 15504a

1 − J̄J 38400m + 36840a 12480m + 12520a

Table 2: Computational costs for the ASIMO example

Using standard matrix methods, the computational complexity of factorizing an n×n
matrix is O(n3), and the complexity of calculating Λ−1, either from Eq. 7 or from an
equation resembling Eq. 20 or 22, is O(mn2 + m2n). However, by exploiting the sparsity
in H and J , we obtain a computational complexity of O(nd2) for the LTL and LTDL
factorizations, a complexity of O(md2) for calculating Y , and a complexity of O(m2d) for
calculating Λ−1 from Y , where d is the depth of the connectivity tree. The first figure is
proved in Featherstone (2005), and the other two follow immediately from the formulae
in Table 1 and the fact that di ≤ d and dij ≤ d for all i and j.

The numbers of nonzero elements in H and J are O(nd) and O(md), respectively.
The cost of calculating H via the composite-rigid-body algorithm is O(nd) (Featherstone,
2005, 2008); and the cost of calculating J , as defined in Section 5, can be seen to be O(md)
(at most O(m) bodies, with at most O(d) coordinate transform and joint motion subspace
matrices to calculate per body), unless there is hidden complexity in calculating R. Thus,
if d is subject to a fixed upper limit then the complexity of calculating Λ−1 from scratch
is O(n + m2).

To see how the cost figures in Table 1 work out in practice, let us consider the case
of an ASIMO Next-Generation humanoid robot (Honda, 2004) with an operational space
consisting of the positions and orientations of the hands and feet. In this example, we
have n = 40 and m = 24. Figure 11 shows the connectivity graph of the robot, taking the
torso as the floating base; Table 2 shows the cost figures for this example; and Figure 12
displays the cost figures in the form of a bar graph. The labels J̄ and N in the bar graph
refer to the last two rows of Table 2. For comparison, Table 2 and Figure 12 also show
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Figure 12: A comparison of operations counts

the total cost of calculating H and C in Eq. 1, and the cost of performing the LTDL
factorization on H (i.e., the cost of calculating Ld and D). These figures are obtained
using the formulae in Featherstone (2005). The lengths of the bars in Figure 12 represent
the total number of floating-point operations performed in each calculation.

As can be seen, the exploitation of sparsity results in substantial reductions in com-
putational cost. In absolute terms, the largest cost reductions occur in the calculation
of J̄ and N , where more than 50,000 floating-point operations are saved in each case.
In relative terms, the largest cost reduction occurs in the calculation of Y = JL−1,
where the operations count is reduced by a factor of 9.5. The total cost of calculating
Λ−1 from H and J is 646d + 6075m + 5775a using the new algorithms, compared with
1740d+41380m+41080a using standard matrix methods. This is a factor of 6.7 reduction
in the total operations count.

A few more numbers may be of interest at this point: J has 960 elements in total, of
which 312 are nonzero; H has 1600 elements in total, of which 708 are nonzero; and L
also has 1600 elements in total, of which 820 would be nonzero in a dense lower-triangular
matrix, but only 374 elements of L are actually nonzero. Approximately 67% of the
elements of J and 56% of the elements of H are zeros.

Finally, let us compare the sparse factorization method with the recursive, low-order
algorithm for calculating Λ−1 that was invented by Rodriguez et al. (1992). To achieve a
fair comparison, this algorithm has been extensively optimized; and both the optimized
version and its associated cost figures are presented in Appendix B. Figure 13 shows
the costs incurred by both algorithms when applied to the ASIMO example. The cost

19



Operations Count x 1000

10 20 30

H LTDL JL
−1

YY
T

ΩD
−1, τ

Figure 13: Sparse factorization versus the algorithm of Rodriguez et al.

oper. cost
robot space n d m ratio

ASIMO HF 40 14 24 1.618
ASIMO HFH 40 14 30 1.923
+ 6 joints per limb HF 64 20 24 1.369
+ 12 joints per limb HF 88 26 24 1.095
4 arms, 4 legs HF 70 14 48 2.496
+ 10 DoF per hand HF 60 16 24 1.122
+ 10 DoF per hand FTF 60 16 36 1.277

HF = hands and feet; HFH = hands, feet and head
FTF = forefingers, thumbs and feet

Table 3: Cost ratios for various robot mechanisms and operational spaces

of calculating C has been omitted because it is a common precursor to both algorithms.
It can be seen that the cost of the low-order method is about 60% higher than the cost
of the sparse factorization method on this particular example, due mainly to the high
cost of calculating the matrix Ω. However, as the complexity of the low-order method is
O(N + m2d), compared with O(nd2 + md2 + m2d) for the sparse factorization method, it
follows that the low-order method will be faster on systems with sufficiently large d.

Clearly, the cost ratio of the two algorithms will vary as a function of the connectivity
of the robot mechanism and the choice of operational space. To investigate this effect,
Table 3 lists several variants of the ASIMO example along with their associated cost ratios,
the latter being the cost of calculating D−1, τ̄ and Ω divided by the cost of calculating
H , JL−1

d and YDY
T

d and performing the LTDL factorization (cf. Figure 13).
The first line in Table 3 lists the data for the ASIMO example. The next line shows

what happens if we increase the dimension of operational space by adding another body
(the head). In this case, the cost ratio goes up to 1.923, meaning that the sparse factor-
ization method is now more than 90% faster than the low-order algorithm. The reason
for this is that the cost of calculating Ω has grown by more than the cost of calculating
JL−1

d and YD Y
T

d . Of course, the converse is also true: if we reduce the dimension of
operational space by removing bodies then the cost ratio will go down.

In the next two lines, the robot mechanism is altered by adding first 6 and then 12 extra
joints to each limb. The idea is to show what happens as we increase d without altering
the operational space or adding any new branches to the mechanism. As expected, the
cost ratio goes down. The low-order algorithm beats the sparse factorization algorithm
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once 15 extra joints have been added to each limb.
The next line shows what happens if we double the number of limbs. This has the effect

of doubling m (twice as many hands and feet) and increasing n, but leaving d unaltered.
In this case, the cost ratio has risen to almost 2.5, meaning that the sparse factorization
method is almost 2.5 times faster than the low-order algorithm. This is partly because
of the large increase in the cost of calculating Ω, and partly because the extra branches
increase the sparsity of H . (73% of the elements of H are zero in this example.) Observe
that this increase in relative efficiency has occurred despite the increase in n from 40
to 70. Thus, the exploitation of branch-induced sparsity has accelerated what would
otherwise be an O(n3) algorithm to such an extent that it substantially out-performs an
O(n) algorithm at n = 70.

In the two last lines of Table 3, ASIMO’s 2-DoF hands have been replaced with 12-
DoF hands comprising three fingers and a thumb, each with three independent degrees of
freedom. These two examples show that the effect of branching at the hands is different
from branching at the torso, since the cost ratio has gone down rather than up. There
are two reasons for this. The first is that branches near the tips of a tree cause less
branch-induced sparsity than branches near the root. In fact, only 64% of the elements
of H are zero in this case, compared with 73% for the 8-limb example; and the cost of
factorizing H is actually slightly higher than for the 8-limb example, despite it being
a smaller matrix. The second reason, which applies only to the final example, is that
the cost of calculating an off-diagonal submatrix Ωij grows with the length of the path
between i and j in the connectivity graph; so the total cost of calculating Ω will be
reduced because some submatrices Ωij refer to a finger and thumb on the same hand.

10 Conclusion

This paper has shown how to exploit branch-induced sparsity when calculating the equa-
tions of operational-space dynamics for a robot mechanism having a branched kinematic
structure. It is shown that the operational-space inverse inertia matrix can be expressed
in the form Λ−1 = Y Y T, or Λ−1 = YDY

T
d , where Y , Yd and YD all have the same

sparsity pattern as the task Jacobian, J ; and a new method is proposed for calculating
Λ−1 via these expressions. The expressions themselves are not new, being implicit in the
results of Rodriguez et al. (1992).

This paper also presents a collection of algorithms for multiplying vectors by the Jaco-
bian, and for calculating the matricesΛ−1, J̄ andN , the latter two being the dynamically-
consistent generalized inverse and null-space projection matrix, respectively, of J . These
algorithms exploit the sparsity in J , Y , and other matrices, to achieve considerable cost
savings relative to standard matrix arithmetic functions. A table of cost formulae is given,
and the computational complexity of calculating Λ−1 is shown to be O(nd2 +md2 +m2d),
where m and n are the dimensions of operational space and joint space, respectively,
and d is the depth of the robot’s connectivity tree. The magnitude of the cost savings
is illustrated by an example involving the control of the hands and feet of an ASIMO
Next-Generation humanoid robot. In this example, the exploitation of sparsity cuts the
cost of calculating Λ−1 by a factor of 6.7, and cuts the cost of calculating J̄ and N by
more than 50,000 arithmetic operations each.
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The new method is also compared against a highly-optimized version of the low-order
algorithm for calculating Λ−1 invented by Rodriguez et al. (1992). This algorithm, and
its associated cost formulae, are presented in Appendix B. It is shown that the new
method is 1.6 times faster on the ASIMO example; and several variants of this example
are examined briefly in order to show how the cost ratio varies as a function of the robot’s
connectivity and the choice of operational space.

One obvious item for future work is to extend the theory to more general operational
spaces in which some coordinates are functions of the relative motion of two bodies or the
motion of the system center of mass.
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A Proof that L(λ) is a Group

It is well known that the set of nonsingular, lower-triangular, n×n matrices forms a group
under matrix multiplication. L(λ) is clearly a subset of this group. Therefore, in order to
prove that L(λ) is a group, it is sufficient to show the following:

1. L(λ) contains the identity matrix,

2. multiplication is closed over L(λ), and

3. L ∈ L(λ) implies L−1 ∈ L(λ).

Item 1 follows from the definition of L(λ). Each possible value of λ identifies a set of
elements below the main diagonal that must be zero, but places no constraints on other
elements. As the identity matrix does not contain any nonzero elements below the main
diagonal, it automatically qualifies as a member of L(λ) for any value of λ.

Item 2 can be proved as follows. Let A,B ∈ L(λ), and let C = AB. The elements of
C are given by the formula

Cij =
n

∑

k=1

AikBkj . (34)

23



Now, Aik can be nonzero only if k ∈ κ(i), and Bkj can be nonzero only if j ∈ κ(k), which
is equivalent to k ∈ ν(j), so Eq. 34 simplifies to

Cij =
∑

k∈κ(i)∩ν(j)

AikBkj . (35)

However, the set κ(i) ∩ ν(j) will be nonempty only if j ∈ κ(i); and so Cij can have a
nonzero value only if j ∈ κ(i), which implies C ∈ L(λ).

Item 3 can be proved by induction. First, we define n̄ to mean ‘all elements except n’,
so that λ(n̄) is the subarray of λ consisting of the first n− 1 elements, Ln̄n̄ is the leading
(n−1)× (n−1) submatrix of L, and so on. The proof strategy is as follows: by assuming
that Item 3 holds for L(λ(n̄)), we can show that L ∈ L(λ) implies L−1 ∈ L(λ). As the
assumption is trivially true for n = 2, the proof follows by induction for all n > 2.

Given any L ∈ L(λ), its inverse can be written in partitioned form as

L−1 =

[

L−1
n̄n̄ 0

−Lnn̄L
−1
n̄n̄/Lnn 1/Lnn

]

, (36)

where L−1
n̄n̄ means (Ln̄n̄)−1. Now, L ∈ L(λ) implies Ln̄n̄ ∈ L(λ(n̄)), so we assume L−1

n̄n̄ ∈
L(λ(n̄)). This assumption implies that the top n−1 rows of L−1 have the correct sparsity
pattern for L−1 to be a member of L(λ), so the only question is whether or not the bottom
row also has the correct sparsity pattern. The elements on this row, lying in columns 1
to n − 1, are given by

(L−1)nj =
−1

Lnn

n−1
∑

k=1

Lnk(L
−1
n̄n̄)kj , (j < n) (37)

where (· · · )ij means element ij of the matrix expression inside the parentheses. Now, Lnk

can only be nonzero if k ∈ κ(n), and (L−1
n̄n̄)kj can only be nonzero if j ∈ κ(k), which is

equivalent to the condition k ∈ ν(j) \ {n} (the set difference of ν(j) and {n}), so Eq. 37
simplifies to

(L−1)nj =
−1

Lnn

∑

k∈κ(n)∩ν(j)\{n}

Lnk(L
−1
n̄n̄)kj . (j < n) (38)

Once again, the set κ(n)∩ν(j)\{n} can only be nonempty if j ∈ κ(n), and so the bottom
row of L−1 does have the correct sparsity pattern for L−1 to be a member of L(λ).

B Optimized RJK Algorithm

This appendix presents an optimized version of a recursive, low-order algorithm for cal-
culating Λ−1 that was originally described in Rodriguez et al. (1992) (especially pages
46 and 47), with corrections appearing in Jain (2009). It will be referred to here as the
RJK algorithm. The purpose of this appendix is partly to present an efficient version of
this algorithm, and partly to present computational cost figures for this algorithm so that
they can be compared with the algorithm in the main text. (Computational cost figures
for the original RJK algorithm are not available.)

24



for i = 1 to N do
Pi = Mi

end
for i = N down to 1 do
D−1

i = (HiPiH
T
i )−1

if λ(i) 6= 0 then
τ̄i = 1 − PiH

T
i D

−1
i Hi

Pλ(i) = Pλ(i) + φi τ̄iPiφ
T
i

end
end
for i = 1 to N do

if need(i, i) then
Ωii = HT

i D
−1
i Hi

if λ(i) 6= 0 then
Ωii = Ωii + τ̄T

i φ
T
i Ωλ(i)λ(i) φi τ̄i

end
end

end
for i = 1 to N − 1 do

for j = i + 1 to N do
if need(i, j) then

if ancest(i, j, λ) = i then
Ωij = Ωiλ(j)φj τ̄j

elseif ancest(i, j, λ) > 0 then

Ωij = τ̄T
i φ

T
i Ωλ(i)λ(j) φj τ̄j

else
Ωij = 0

end
Ωji = ΩT

ij

end
end

end
Λ−1 = BTΩB

Figure 14: Optimized RJK Algorithm for calculating Λ−1
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The optimized version of the RJK algorithm is shown in Figure 14. The notation used
here resembles the original, so that the correspondence between this algorithm and the
original can easily be seen. The quantities Hi here equal iST

i in the main text. If every
joint is revolute then Hi = [0 0 1 0 0 0] for all i. The quantities Mi are the spatial
inertias of the individual bodies in the robot mechanism, expressed in link coordinates,
and they are known constants. The quantities Pi are articulated-body inertias, and the
second loop in Figure 14 is a stripped-down version of the main pass in the standard
articulated-body algorithm which has been modified to calculate the quantities D−1

i and
τ̄i for subsequent use. τ̄i are force propagators, and they have the special form

τ̄i =

















1 0 τi1 0 0 0
0 1 τi2 0 0 0
0 0 0 0 0 0
0 0 τi4 1 0 0
0 0 τi5 0 1 0
0 0 τi6 0 0 1

















if the joints are revolute. The quantities φi are the coordinate transforms that map spatial
force vectors from link i coordinates to link λ(i) coordinates. They are therefore a little
different from the corresponding quantities in Rodriguez et al. (1992), which implement
only a shift of origin. In the original RJK algorithm, the matrices φi and τ̄i are multiplied
together to produce a set of matrices ψi = φiτ̄i, which are then used in later parts of the
algorithm. This is not done here because it is more efficient to keep φi and τ̄i separate.

The matrix Ω equals SH−1ST in the main text, and it is an N × N block matrix
of 6 × 6 submatrices Ωij. The matrix B corresponds to RT in the main text, although
its definition in Rodriguez et al. (1992) is more restrictive than the definition of R.
To facilitate the comparison of computational costs, we shall assume that a task-space
velocity vector is the concatenation of one or more spatial velocity vectors, each expressed
in its local link coordinate system. This assumption simplifies B to such an extent that
the final line in Figure 14 amounts to selecting a subset of Ω, which has a computational
cost of zero. Finally, note that the quantity Λ−1 is called Λ in Rodriguez et al. (1992).

The algorithm proposed by Chang (Chang and Khatib, 1999, 2000, 2001) differs from
the RJK algorithm in only one detail: it calculates Ωij from ΩT

jλ(i) and Ωiλ(j) instead of
Ωiλ(j) and Ωλ(i)λ(j). This arrangement appears to require the computation of both the
upper and lower triangles of Ω, and it is not clear whether the symmetry of Ω is to be
exploited. Without a more precise description, it is not clear whether Chang’s algorithm
offers any consistent advantage over the RJK algorithm.

The algorithm presented in Figure 14 differs from the original RJK algorithm in the
following respects.

1. The bodies are numbered from the base to the tips.

2. The connectivity is described by the parent array, λ.

3. The calculations are performed explicitly in link coordinates.

4. Only the smallest necessary subset of Ω is calculated.

5. The component calculations exploit numerous efficiency tricks.
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need = 0
for i = N down to 1 do

for j = N down to i do
if i ∈ b and j ∈ b then

need(i, j) = 1
end
if need(i, j) then

if i = j then
if λ(i) 6= 0 then

need(λ(i), λ(i)) = 1
end

elseif ancest(i, j, λ) = i then
need(i, λ(j)) = 1

elseif ancest(i, j, λ) > 0 then
need(λ(i), λ(j)) = 1

end
end

end
end

Figure 15: Algorithm for calculating need

Items 1 and 2 serve to make the algorithm simpler and easier to follow. Item 3 makes
explicit an implementation detail that was left unspecified in the original RJK algorithm.
(The algorithm is most efficient when performed in link coordinates.) The explicit use of
link coordinates in the modified algorithm accounts for the different definitions of φi here
and in Rodriguez et al. (1992). Items 4 and 5 account for the efficiency improvements.
Item 4 is accomplished via the quantities need(i, j), while the effect of item 5 can be seen
in the figures in Table 4.

The quantities need(i, j) are the elements of a square array of boolean values called
need. This array is defined such that need(i, j) is true if Ωij needs to be calculated, given
the particular set of bodies listed in the task-space bodies array, b. An algorithm for
calculating need is shown in Figure 15. The first line sets the whole array to 0 (=false),
and the rest of the code sets some individual elements to 1 (=true). It can be seen
that need depends only on λ and b; so its value needs to be recalculated only relatively
infrequently. In practice, the use of need(i, j) greatly improves the efficiency of the RJK
algorithm.

Table 4 shows the computational costs of the various individual calculations appearing
in Figure 14. The multiplications φT

i (· · ·) and τ̄T
i (· · ·) cost the same as Ωiλ(j)φj and

(· · ·) τ̄j , respectively, and have therefore not been included in the table. The figures in
this table include a high degree of optimization, and exploit efficiency tricks such as those
described in Featherstone (2008); McMillan and Orin (1995). In particular, they assume
that every joint is revolute, and that Hi = [0 0 1 0 0 0] in link coordinates for all i.

Another optimization concerns the use of axial-screw transforms (Featherstone, 2005,
2008; McMillan and Orin, 1995). When the idea behind Denavit-Hartenberg parameters
is generalized to a branched kinematic tree, we find that exactly one child of each non-
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calculation screws cost

D−1
i 1d

τ̄i 5m

τ̄iPi 15m + 15a

φi (· · ·)φ
T
i

2
3

60m + 62a

98m + 102a

Pλ(i) + (· · ·) 21a

φT
i Ωλ(i)λ(i) φi

2
3

76m + 80a

114m + 120a

τ̄T
i (· · ·) τ̄i 35m + 28a

Ωii + (· · ·) 1a

Ωiλ(j)φj

2
3

120m + 72a

144m + 108a

(· · ·) τ̄j 30m + 24a

Table 4: Computational costs of component calculations, assuming all joints are revolute

terminal link can have its coordinate frame positioned such that the coordinate transform
between it and its parent can be accomplished by means of two axial-screw transforms:
one about the x axis and one about the z axis. All other link-to-link coordinate transforms
are general, and are therefore equivalent to three axial screws. As a 2-screw transform
is significantly cheaper than a 3-screw transform, it is assumed that this cost saving is
exploited wherever possible. For each coordinate transform operation in Figure 14, Table 4
lists both the 2-screw cost and the 3-screw cost.

When the modified RJK algorithm is applied to the ASIMO example, we find that the
second loop in Figure 14 is executed 35 times (N = 35), and that λ(i) 6= 0 is true on all
but one iteration. Of the 34 coordinate transforms performed by this loop, 28 are 2-screw
and 6 are 3-screw transforms. The total cost of calculating D−1

i and τ̄i is therefore

cost of D−1
i , τ̄i : 2948m + 3572a + 35d . (39)

In the third loop, we find that need(i, i) is true on 28 occasions, and that λ(i) 6= 0
is true on all but one of those occasions. Of the 27 coordinate transforms performed by
this loop, 24 are 2-screw and 3 are 3-screw transforms. In the final loop, need(i, j) is
true on 39 occasions, and every one of those is an instance of the case ancest(i, j, λ) > 0.
This loop therefore performs a total of 78 coordinate transforms, of which 71 are 2-screw
transforms and 7 are 3-screw transforms. From these figures, the total cost of calculating
Ω is

cost of Ω : 14979m + 10803a . (40)

In the ASIMO example, Ω is a 35 × 35 matrix of 6 × 6 blocks, so a 210 × 210 matrix
overall. If we were to exploit only the symmetry of Ω, then it would be necessary to
calculate 630 blocks. However, only 67 elements of need are true, so the optimized RJK
algorithm actually calculates only 67 blocks. Given that the off-diagonal blocks are more
expensive than the diagonal blocks, the use of need has reduced the cost of calculating Ω
by more than a factor of 10. It can be shown that the computational complexity of this
algorithm (counting only the floating-point arithmetic) is O(N + dm2).
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