
Quantitative Measures of a Robot’s Physical Ability to

Balance

Roy Featherstone
Dept. Advanced Robotics, Istituto Italiano di Tecnologia

via Morego 30, 16163 Genova, Italy

Final submission to IJRR, RSS special issue, August 23, 2016

Abstract

This paper presents quantitative measures of a robot’s physical ability to balance

itself actively on a single point, line or area of support. These measures express the

ratio of a change in the state of motion of the robot’s centre of mass to the amount

of action required at the actuated joints in order to produce that change. They

therefore represent measures of the gain of the robot mechanism as seen from the

point of view of the balance control system. This paper is concerned mainly with

ratios of velocities, called velocity gains, and it builds on earlier work by showing

how these ratios can be defined and calculated for the case of a general planar or

spatial robot balancing on a point, line or general rolling contact, or an area contact

with a compliant surface. The paper concludes with three examples of use—design

of a triple pendulum, analysis of a hydraulic quadruped, and expressing the physics

of planar balancing—followed by a short discussion of gyroscopic balancing.

Keywords: legged robots, mobile robots, robot design, active balancing, balance

control, centre of mass, velocity gain, robot dynamics.

1 Introduction

The ability to balance actively on a single point, line or small area of support is something
that we take for granted in the natural world (Grizzle et al., 2005; Xinjilefu et al., 2009).
Robots used to lack this skill, but this is no longer the case. In the commercial realm,
there is the Segway Personal Transporter (Segway, 2015) and an increasing number of
low-cost telepresence robots such as the Double (Double Robotics, 2015). In the research
laboratories there is the Ballbot (Lauwers et al., 2006), the AcroBOX (Miyashita et al.,
2006), the Cubli (Gajamohan et al., 2012), the spatial double inverted pendulum (Xinjilefu
et al., 2009), the Acrobot (Hauser and Murray, 1990), and many more.

Active balancing is required whenever the polygon of support shrinks to a point or a
line, or becomes very narrow in at least one direction. The robots listed above must all
balance actively in order to remain upright. Humanoids, on the other hand, with their
large flat feet, are designed not to need this skill. However, even a humanoid must balance
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actively if it wants to stand on a convex surface, such as a hump. Active balancing may
also be necessary if the supporting surface is compliant.

Robotic balancing presents us with an interesting control problem, but this has led to
an imbalance in the way the topic has been treated: too much attention on the control
system and not enough on the plant. For example, how good are the above robot mecha-
nisms at balancing? Could they be better? And how does one measure a robot’s physical
ability to balance? This is a separate issue from the performance of the control system,
and has received relatively little attention.

This paper builds on an idea originally proposed in Featherstone (2013), which can
be stated in general terms as follows. The objective of the balance controller is to control
the motion of the robot’s centre of mass (CoM), but the only thing it can control directly
is the motion of the actuated joints. Therefore, from the controller’s point of view, the
robot is a plant in which motion of the CoM is the output and motion of the actuated
joints is the input. The performance of the robot can then be characterized by its gain—
the ratio of output to input. If the gain is large then a relatively small movement of
the actuated joints is sufficient to correct a balance error; but if the gain is small then a
larger movement is required; and if the gain is zero then an infinite movement is required,
meaning that balancing is physically impossible in the current configuration.

The gain can be defined in different ways, depending on how the motions are measured,
resulting in several similar but not identical gains. The two that receive most attention
in this paper are both ratios of velocities, and are therefore called velocity gains.

Whichever definition is chosen, the robot’s gain provides a quantitative measure of
the robot’s physical ability to balance: it quantifies the amount of motion the robot must
make in order to correct a balance error. The smaller the gain, the more work the robot
has to do in order to maintain its balance. Likewise, the smaller the gain, the more the
robot will wobble in response to sensor noise, and the smaller the minimum disturbance
required to cause the robot to fall.

The value of the gain depends on the robot’s dynamics, and it is a physical property
of the robot mechanism. It is independent of the control law employed by the balance
controller, but it does depend on the choice of which joint motions to use for balancing.

This paper is a revised and extended version of Featherstone (2015a). In addition to
the main contributions of the earlier paper in presenting general definitions of velocity
gain, detailed calculation procedures, and examples of use, this paper presents two more
calculation methods, a substantially more detailed discussion of the properties and uses
of velocity gains, definitions of the related concepts of momentum and position gain, and
a section on gyroscopic balancing.

The rest of this paper is organised as follows: Section 2 defines the linear and angular
velocity gain for the special case of a planar double pendulum with one actuated joint,
and explains how to calculate them. Section 3 examines some of their properties. Sections
4 and 5 then extend the definitions and calculation details to general planar and spatial
mechanisms, respectively, and Section 6 presents further details pertaining to general
rolling contact. Then Section 7 presents three examples of practical use: the design
of a triple-pendulum robotic balancer, analysis of the balancing ability of an existing
hydraulic quadruped, and expressing the physical process of general planar balancing in
a form suitable for control. Finally, Section 8 discusses the phenomenon of gyroscopic
balancing and how to measure it using gyroscopic acceleration gains.
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Figure 1: Definition of velocity gain (based on Fig. 1 in Featherstone (2013))

2 Velocity Gain

This section introduces the idea of velocity gain via the simple planar self-balancing robot
shown in Figure 1. This robot consists of a lower link (link 1), which makes contact with
a supporting surface (the ground) at a single point, and an upper link (link 2) which is
connected to the lower link via an actuated revolute joint (joint 2, with joint variable
q2). For the purpose of calculating the velocity gain, it is assumed that the ground is flat
and horizontal, and that the lower link rolls without slipping or losing contact with the
ground.

Although the lower link has been drawn as a leg with a foot, it could just as easily
be a wheel. Any shape is acceptable, including sharp points, so long as the portion of
the link that makes contact with the ground is strictly convex, so that it always makes
contact at a single point.

This rolling contact between the lower link and the ground is effectively a one-degree-
of-freedom (DoF) joint, which can be characterized by a single joint variable denoting an
angle (joint 1, with joint variable q1 in the diagram). If the robot is balancing on a sharp
point then the rolling contact simplifies to a revolute joint at the contact point.

The vector c, having components cx and cy, gives the position of the robot’s centre
of mass (CoM) relative to the contact point; the angle φ gives the direction of c relative
to the x axis (or any other datum, if preferred); and b = [−cy cx]

T/|c| is a unit vector
perpendicular to c in the direction of increasing φ. (|c| denotes the magnitude of c.)

The objective of a balance controller is either to drive cx to zero, or φ to 90◦, by
motions of the actuated joint. Therefore, from the point of view of the balance controller,
the robot can be regarded as a plant in which the output is either cx or φ and the input
is q2. To define a measure of the instantaneous relationship between input and output,
we imagine that an impulse has been applied at joint 2 causing both a step change in q̇2
and a step change in ċ. Two ratios can now be defined as follows:

Gv =
∆ċx
∆q̇2

and Gω =
∆φ̇

∆q̇2
=

b ·∆ċ

|c|∆q̇2
, (1)

in which the quantities ∆ċx, ∆φ̇ and ∆q̇2 all denote step changes in the relevant velocities
caused by the impulse at joint 2. Both ratios depend on the robot’s configuration, but
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not on the applied impulse. As they are both ratios of an output signal to an input signal,
they have the nature of gains; and as they are both ratios of velocities, they will be called
velocity gains. In particular, Gv is the robot’s linear velocity gain, and Gω is its angular
velocity gain. (Note that Featherstone (2013) defines only the angular velocity gain, but
calls it Gv.)

The reason for applying an impulse at joint 2, rather than a force, is that it simplifies
the calculations. Both gains could have been defined as the ratios of step changes in
accelerations caused by a step change in the torque acting at joint 2, thus:

Gv =
∆c̈x
∆q̈2

and Gω =
∆φ̈

∆q̈2
. (2)

There is no difference between the definitions in Eqs. 1 and 2. Note, in particular, that
these gains are independent of the gravity and velocity terms in the robot’s equation of
motion; so they are valid in any gravitational field, and in any state of robot motion.
Also, they are defined in any configuration, not only those in which the robot is balanced.
In the special case of a balanced configuration, the two gains are related by

Gv = −|c|Gω . (3)

2.1 Calculation Methods

Velocity gains are easily calculated using standard functions. This section presents three
general methods, each one adapted to the special case in Figure 1 in which there are only
two joint variables. To facilitate the calculations, it is assumed that the following items
are available:

1. a data structure rob containing a dynamic model of the robot (kinematic and inertia
parameters, connectivity and joint type data);

2. a function jsim(rob, q) to calculate the joint-space inertia matrix H of the mecha-
nism described by rob in the configuration q; and

3. a function [c, ċ] = cmpv(rob, q, q̇) to calculate c and ċ, expressed in 2D world
coordinates (y points up), given rob, q and a vector of joint velocity variables q̇.

Method I: Direct

Using the robot’s impulsive equation of motion (Featherstone, 2008; Featherstone and
Orin, 2008), we first calculate the velocity step at the passive joint (joint 1) corresponding
to a unit step at the actuated joint (joint 2), both steps being caused by an impulse ι2 at
the actuated joint. For the mechanism in Figure 1 the impulsive equation is

[

H11 H12

H21 H22

] [

∆q̇1
∆q̇2

]

=

[

0
ι2

]

, (4)

and setting ∆q̇2 = 1 gives

∆q̇1 =
−H12

H11
. (5)
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Then c and ∆ċ are calculated using

[c, ∆ċ] = cmpv(rob, q,

[

∆q̇1
1

]

) , (6)

and the gains are

Gv = ∆ċx and Gω = ∆φ̇ =
b ·∆ċ

|c| . (7)

Method II: CoM Jacobian

The CoM Jacobian is a matrix that maps q̇ to the velocity of the CoM (Sugihara et al.,
2002). If the robot is balancing on a sharp point, rather than a rolling contact, then ċ

is the velocity of the CoM; so we have ċ = Jq̇, and therefore also ∆ċ = J∆q̇, where J

denotes the CoM Jacobian. Equation 6 can therefore be replaced with

∆ċ = J

[

∆q̇1
1

]

(8)

plus some means of calculating c. This method illustrates the fundamental difference
between velocity gain and the CoM Jacobian: the latter is a general mapping from joint
to CoM velocity vectors, whereas the former is a function of one particular joint velocity
vector: the one that describes how the robot behaves when an impulse is applied at the
actuated joint only, causing a unit-magnitude step in the velocity of that joint.

Method III: Augmented Inertia Matrix

Let rob′ denote a modified version of rob in which a fictitious prismatic joint parallel to
the x axis has been inserted between the foot and the ground. To avoid renumbering the
other joints, let us call it joint 0. This joint never moves, and therefore has no effect on
the dynamic behaviour of the robot, but it does have an effect on the impulsive equation
of motion, which now reads





H00 H01 H02

H10 H11 H12

H20 H21 H22









0
∆q̇1
∆q̇2



 =





ι0
0
ι2



 . (9)

Because joint 0 lies between the foot and the ground, it follows that the ground-reaction
impulse must pass through joint 0. This, in turn, implies that ι0 must be the x component
of the linear ground-reaction impulse, which means that ι0 = m∆ċx where m is the total
mass of the robot. Setting ∆q̇2 = 1 as before, we find that ∆q̇1 is still given by Eq. 5, but
we now have a new way to calculate Gv:

Gv =
ι0
m

=
1

m
(H01∆q̇1 +H02∆q̇2) =

1

m
(H02 −

H01H12

H11
) . (10)

This formula is particularly useful for calculating the linear velocity gain. To calculate
the angular velocity gain by this method, the fictitious joint is defined to be a 2-DoF joint
allowing translations in the x and y directions, so that ι0 is a 2D vector with x and y
components from which both ∆ċx and ∆ċy can be calculated.
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2.2 Momentum Gain

An obvious alternative to a velocity gain is a ratio of two momenta, or, to be more
precise, a ratio of a change in momentum to the impulse that causes it. In analogy with
linear velocity gain, we can define linear momentum gain as the ratio of a change in the
horizontal component of a robot’s total linear momentum to the impulse at the actuated
joint that causes it. Likewise, in analogy with angular velocity gain, we can define angular
momentum gain as the ratio of a change in the moment of momentum of the robot’s CoM
about the support point to the impulse at the actuated joint that causes it.

Observe the careful definition of angular momentum gain: it is not defined in terms
of the robot’s total angular momentum about the support point because the actuated
joint has no instantaneous influence over this quantity, so any such gain would always
have the value zero. Instead, it is defined in terms of the component of the total angular
momentum which is due to the motion of the CoM.

These definitions imply the following formulae for the linear and angular momentum
gains of the robot in Figure 1:

Gm =
m∆ċx
ι2

= mGv
∆q̇2
ι2

(11)

and

Go =
mc2∆φ̇

ι2
= mc2Gω

∆q̇2
ι2

, (12)

where Gm and Go denote the linear and angular momentum gains, respectively, mc2 is
the moment of inertia of the CoM about the support point (i.e., the moment of inertia
that the robot would have if all of its mass were concentrated at the CoM), and

∆q̇2
ι2

=
H11

det(H)
(13)

(obtained by solving Eq. 4 for ∆q̇2 with ι2 = 1). Note that Gm is also given by the ratio
ι0/ι2 from Eq. 9.

These equations show that Gm is a strictly positive multiple of Gv, and that Go is a
strictly positive multiple of Gω everywhere except c = 0. The momentum gains therefore
have the same signs and the same zero-crossing points as the corresponding velocity gains.
In fact, momentum gains are so similar to velocity gains that they do not appear to offer
any useful new property or insight beyond what is already available from velocity gains.
So there is no objective reason to prefer them over velocity gains, and they are mentioned
here mainly for the sake of completeness.

3 Properties and Examples

Velocity gains measure the degree of influence that motion of the actuated joint has over
motion of the CoM: the larger the magnitudes of these gains, the greater the influence,
and therefore the better the robot is at balancing. If the gains are zero at some particular
configuration then the robot is physically incapable of balancing at that configuration.

The two gains have slightly different properties, and the choice of which one to use
depends on circumstances. For example, Gω is not defined when c = 0, so it is not
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appropriate in situations where the CoM could coincide with the support point. Likewise,
Gv does not distinguish between cy > 0 and cy < 0, so it might not be appropriate in
applications like swing-up control, where the CoM starts below the support point but must
finish above it. However, in the context of a robot balancing on a horizontal supporting
surface, we can safely assume that cy > 0 so that neither of these problems arise. Practical
experience with these gains suggests that Gv is more useful for studying balance control
systems and the physical process of balancing, while Gω is more useful for designing and
analysing robot mechanisms.

Geometric Effects

Neither Gω nor Gv is defined where there is a step change in the local curvature at the
contact point because this causes a step change in the values of the velocity gains. (See
Section 6.) This problem also arises if there is a step change in the curvature of the
supporting surface, which is why we have assumed that it is flat. However, the shape
of the supporting surface becomes progressively less relevant as the foot gets smaller,
and is completely irrelevant if the robot is standing on a point foot. The instantaneous
kinematics of a rolling contact depends on the sum of the curvatures of the contacting
surfaces; so the effect of a curved supporting surface can easily be incorporated into the
calculation of velocity gain if required.

If the radius of curvature is greater than |c| in some neighbourhood of an equilibrium
configuration then it is a stable equilibrium; otherwise it is unstable and active balancing
is required to prevent the robot from falling. A robot may possess both stable and
unstable equilibrium configurations. As the curvature approaches zero, the rolling contact
approaches an area contact and the velocity gains approach infinity.

Zero Crossings

At a balanced configuration, the zeros of Gv and Gω coincide (Eq. 3). In the neighbour-
hood of a zero crossing, balancing is impossible because both a positive and a negative
motion of the actuated joint will correct a balance error in one direction, but no motion
can correct an error in the other direction. An example is shown in Figure 2. This prob-
lem can be overcome if the robot has more than one actuated joint and at least one joint
(or combination of joints) has a usable velocity gain.

Velocity gains typically undergo a zero crossing as the foot’s radius of curvature is
increased from zero towards infinity; and this typically happens before the transition
from unstable to stable equilibrium. Thus, there will often be a range of foot curvatures
that are worse for balancing than a point foot.

Area Contact

In an area contact, the ground reaction forces define a centre of pressure (CoP) that can
be used in place of the contact point in the definition of velocity gain. So c in Figure 1
would be redefined to point from the CoP to the CoM.

If the foot and the supporting surface are both rigid then the velocity gains are infinite
because zero movement is required at the actuated joint to cause a finite displacement of
the CoP, and therefore a finite displacement of the CoM relative to the CoP. In this case,
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Figure 2: This robot’s foot has a step change in curvature at the contact point such that
Gω < 0 to the left and Gω > 0 to the right. As a result, any movement of the actuated
joint can stop the robot from falling to the right, but no movement can stop it from falling
to the left

Figure 3: The equivalence between a flat foot resting on a compliant surface and a curved
foot on a rigid surface

one could imagine using a ‘force-position gain’ (a ratio of a position to a force) instead
of a velocity gain because there is now a well-defined relationship between actuated joint
torque and CoP position.

However, if there is compliance at the contact then it defines a relationship between
the location of the CoP and the orientation of the foot that resembles the behaviour of the
contact point in a rolling contact. The effect is illustrated in Figure 3, which shows the
foot (or two feet acting as one) of a humanoid standing on a compliant surface modelled
as a set of four springs of stiffness K (shown as two springs of stiffness 2K) located at
the corners of a rectangle. If the foot is rotated by a small angle θ in the plane of the
drawing then the CoP moves by an amount Kl2xθ/mg, where m is the mass of the robot
and g is the gravitational acceleration. This is the same movement that one would get
from rotating a curved foot with a radius of curvature of Kl2x/mg, so the two situations
are equivalent from a balancing point of view. If the rectangle has dimensions lx× ly then
the equivalent radius of curvature in the other direction is Kl2y/mg.

In this context, it does not matter whether the compliance is physically located in
the ground, the foot, the ankle, or any combination of the three. Tangential compliance
has not been considered here on the grounds that it is likely to have less effect than the
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interplay between normal compliance and foot angle.
The remark above about zero crossings and foot curvature also applies in this case; so

the possibility exists that there could be a range of compliances for which it is harder to
balance on a flat foot than it would be to balance on a point foot on firm ground.

Position Gain

If velocity gain is integrated along a path in the robot’s configuration space, then the result
provides an estimate of the cumulative effect on the CoM of moving the robot along that
path. It is only an estimate because it does not take into account the effects of gravity or
the robot’s initial velocity. Nevertheless, it can provide a designer with an indication of
the effect of an end-to-end movement of a particular joint, or other similar information,
which can be used to help design a robot. An integral of a velocity gain can be called a
position gain. Whereas velocity gains are properties of particular configurations, position
gains are properties of particular paths.

Parameter Variations

It can be seen from the definitions in Eq. 1 that Gω is a dimensionless quantity, whereas
Gv has the physical dimension of length. It therefore follows that both gains are invariant
with respect to a uniform scaling of all masses in the robot, and that Gω is invariant with
respect to a uniform scaling of all lengths. These properties carry over into the general case
provided that the joint variables of the joints used for balancing are all angles. The gains
are also independent of the robot’s velocity variables and the strength of the gravitational
field. A useful special property of Gω is that if the robot is balancing on a sharp point
then Gω is independent of q1. This property carries over to the case of a general robot
balancing on a knife edge.

Although the velocity gains do depend on the mass distribution in general, they are
invariant with respect to certain specific redistributions of mass within the robot mech-
anism. For example, at any revolute joint within the mechanism, a particle of mass m
can be added to one of the two bodies connected by the joint, and a particle of mass −m
added to the other body, provided that both particles are coincident and located on the
joint’s rotation axis (see Featherstone, 2008, §9.7). If the robot is balancing on a sharp
point or edge then a point mass can be added (or subtracted) at the contact point, or
anywhere along the line of the contact edge, without affecting the value of Gω. On its
own, this modification does affect the value of Gv, but a combination of a point mass at
the foot and a uniform scaling of lengths can be found that leaves Gv unaffected.

The freedom to vary parameters in this way means that if a designer can identify
a single mechanism with a desirable balancing property then a multi-parameter family
of other mechanisms with the same property can immediately be generated simply by
varying the kinematic and inertia parameters in ways that have no effect on the velocity
gains.

3.1 The Special Case of a 2R Mechanism

The case of a planar double pendulum balancing on a sharp point is especially simple,
and is amenable to more detailed analysis. This balancer is equivalent to a planar 2R

9



Figure 4: Parameters of the planar 2R balancer

mechanism with a passive first joint, and it can be characterized by the eight parameters
m1, r1, c1x, c1y, m2, r2, c2 and l, as shown in Figure 4. (r1 and r2 are radii of gyration—the
rotational inertia of each link about its CoM is mir

2
i .) The formulae for its velocity gains

are

Gv =
cYH12

H11
− m2 c2Y

m1 +m2
(14)

and

Gω =
m2 c · c2

(m1 +m2)c2
− H12

H11

, (15)

where cY and c2Y are the y components of c and c2 expressed in 2D world coordinates.
These formulae are derived in Appendix A.

The formulae simplify in various ways if the parameters take special values. The most
important of these is when c2 = 0, in which case link 2 is acting as a flywheel. The
formulae for this case are

Gv =
cYH12

H11
and Gω =

−H12

H11
, (16)

where H12/H11 is now a constant equal to the ratio of the rotational inertia of the flywheel
to the rotational inertia of the whole robot about the foot (see Appendix A). So Gω is a
constant in this case.

As this balancer has only a single internal joint, there are a total of four freedoms
to vary the parameters without affecting Gω: uniform scalings of mass and length, an
arbitrary point mass at the foot, and a pair of equal and opposite point masses at joint
2. The first and last of these also leave Gv unaffected, as well as a combination of the
second and third. So Gω is effectively a function of four parameters and one joint variable,
whereas Gv is a function of five parameters and two joint variables. This greater simplicity
of Gω explains why it is a better choice for designing and analysing mechanisms.

Various simplifications can be applied to this mechanism without affecting Gω. For
example, if c2 6= 0 then, by adding a negative mass of −m2r

2
2/(c

2
2 + r22) to link 2 at

joint 2 and the corresponding positive mass to link 1, we obtain r2 = 0 in the modified
mechanism. Thus, without loss of generality, if c2 6= 0 then we can model link 2 as a point
mass on a stick. In like manner, if c1 6= 0 then adding a negative mass of −m1r

2
1/(c

2
1+ r21)
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to link 1 at the foot will reduce r1 to zero. So it will usually be possible to assume
r1 = r2 = 0 without loss of generality. The only common exception is if c2 = 0 in the
original mechanism, in which case other simplifications are possible, as shown in Eq. 16.

3.2 An Impossible Balancer

To illustrate the role that velocity gains can play in the process of discovery, consider the
following problem: is it possible for a 2R balancer to be completely impossible to balance;
that is, to have zero velocity gain everywhere? In the absence of the concept of velocity
gain, a question like this might not even be posed. To attack this problem, we choose Gω

over Gv because it is already independent of q1, thereby simplifying the problem to one
of finding a mechanism with Gω = 0 for every value of q2.

A trivial solution to this problem consists of a massless link 1 and a point mass on
a stick for link 2. As all the mass is concentrated at a single point, the ground reaction
force must pass through this point. Therefore, if the robot is initially at rest, and ignoring
the effect of gravity, movement of joint 2 can produce only a radial movement of the CoM
relative to the foot, which alters the length of c but not its direction.

To this mechanism we can add an arbitrary point mass at the foot without affecting
Gω. Furthermore, bearing in mind the mass and scale invariance of Gω, we can choose
m1 = m2 = 1 and l = 1 without loss of generality. We now have a mechanism in which
both links have mass, but this mechanism is not yet realizable because each link’s mass
is concentrated at a single point.

To solve this problem, we have to assign positive values to r1 and r2. This can be
done by first setting c2 = l, so that the two point masses and joint 2 form an isosceles
triangle with the joint at the apex and the base on the same line as c. The mechanism is
now symmetrical about the perpendicular bisector of the base. Given that the base does
not change direction as q2 varies, it follows that the angular velocities of the two links
are always equal and opposite. This, in turn, implies that if we add equal amounts of
rotational inertia to both links then the angular momenta associated with these inertias
will always cancel exactly, implying that they have no net effect on the orientation of c.

We now have a one-parameter family of physically realizable mechanisms having the
property that Gω = 0 everywhere. Their parameters are: m1 = m2 = 1, l = c2 = 1,
c1x = c1y = 0, r1 = r2, and r1 can be chosen arbitrarily. Add to this the four freedoms to
vary the parameters of a 2R balancer without affecting Gω and we have a five-parameter
set of physically realizable ‘impossible’ balancers. In particular, by adding positive mass
to link 1 at joint 2, and corresponding negative mass to link 2, it is possible to draw the
CoM of link 1 away from the foot, so that c1x > 0.

An example of such a machine is shown in Figure 5. There are mass concentrations in
the two side lobes and the tip of link 2, but there is also distributed mass throughout the
structure. The side lobes are needed in order to obtain a relatively large value of r1 in
combination with a relatively small value of c1x. Other physical realizations are possible.

4 Extension to Multiple Actuated Joints

Consider a general planar robot having n DoF, which includes the passive contact with
the ground. The vector of position variables is partitioned into passive and actuated
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Figure 5: An ‘impossible’ balancer

variables as follows: q = [qT
p qT

a ]
T, where qp = [q1] contains just the angle of joint 1, as

defined previously, and qa = [q2 q3 · · · qn]T contains the variables for the internal motion
freedoms of the mechanism, which are assumed to be fully actuated. If the mechanism
contains passive motion freedoms, such as a spring-loaded joint, then it is assumed that
the amount of movement in these joints is small enough to be ignored.

If the mechanism is a kinematic tree then qa is the vector of joint position variables;
otherwise it is a vector of generalized coordinates from which the joint variables can be
calculated, in which case H is a generalized inertia matrix. Instructions for calculating
such matrices can be found in several textbooks (e.g., Featherstone, 2008),1 and it is
assumed that a function gim(rob, q), analogous to jsim, is available to calculate this
matrix. We shall use gim in place of jsim from here on.

From a balancing point of view, the fundamental difference between a single actuated
freedom and multiple actuated freedoms is that in the latter case the control system can
choose which motion freedoms to allocate to the task of achieving or maintaining balance.
This choice affects the velocity gain, since some movements have more influence on the
CoM than others. Indeed, it will usually be possible to find n − 2 directions of motion
freedom in which the velocity gain is zero—in other words, an (n − 2)-dimensional null
space of motions that the robot can make without affecting its balance.

To cater for this new possibility, we modify Eq. 7 as follows:

Gv(∆q̇a) = ∆ċx , Gω(∆q̇a) = ∆φ̇ =
b ·∆ċ

|c| , (17)

where ∆q̇a is a velocity step chosen by the user, and ∆ċ and ∆φ̇ are the steps in ċ and φ̇
resulting from the actuation impulse ιa that causes ∆q̇a. The gains are then calculated in
almost the same way as before. First we solve the impulsive equation of motion for ∆q̇p:

[

Hpp Hpa

Hap Haa

] [

∆q̇p

∆q̇a

]

=

[

0

ιa

]

(18)

giving
∆q̇p = −H−1

pp Hpa ∆q̇a . (19)

1If H ′ is a joint-space inertia matrix and G is a mapping from generalized to joint-space velocity

variables then H = GTH ′G.
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We then calculate c and ∆ċ from

[c, ∆ċ] = cmpv(rob, q,

[

∆q̇p

∆q̇a

]

) , (20)

and then the gains using Eq. 17.
To understand the definitions in Eq. 17, we imagine that the user has defined a virtual

joint, with joint variable qv, which specifies the movement to be used for balancing. The
relationship between qv and qa is given by qi = fi(qv), i = 2 . . . n, where the functions fi
are chosen by the user. The corresponding relationship between velocity variables is then
q̇i = (∂fi/∂qv)q̇v. A unit-magnitude step in the value of q̇v therefore corresponds to a step
in q̇a given by

∆q̇a =
[

∂f2
∂qv

∂f3
∂qv

· · · ∂fn
∂qv

]T

. (21)

So ∆q̇a in Eq. 17 represents a unit step in a velocity variable defined by the user.
Referring back to Section 2.1, the direct method now consists of calculating ∆q̇p via

Eq. 19, then c and ∆ċ via Eq. 20, and then Gv and Gω via Eq. 17. In the other two
methods, Eqs. 8, 9 and 10 become

∆ċ = J

[

∆q̇p

∆q̇a

]

, (22)





H00 H0p H0a

Hp0 Hpp Hpa

Ha0 Hap Haa









0
∆q̇p

∆q̇a



 =





ι0
0

ιa



 (23)

and

Gv(∆q̇a) =
1

m
(H0a −H0p H

−1
pp Hpa)∆q̇a . (24)

One new property of the velocity gains in Eq. 17 is that they are linear in their
arguments. Thus, for any two scalars α1 and α2, and any two vectors q̇1 and q̇2, we have

Gv(α1q̇1 + α2q̇2) = α1Gv(q̇1) + α2Gv(q̇2) (25)

and
Gω(α1q̇1 + α2q̇2) = α1Gω(q̇1) + α2Gω(q̇2) . (26)

An immediate consequence is that we only need to know the gains for the individual
variables in q̇a, since all other gains are just linear combinations of these ones. If we
define Gvi and Gωi to be the gains associated with variable i then we can define matrices

Gv =
[

Gv2 Gv3 · · · Gvn

]

(27)

and
Gω =

[

Gω2 Gω3 · · · Gωn

]

(28)

such that
Gv(∆q̇a) = Gv ∆q̇a (29)

and
Gω(∆q̇a) = Gω ∆q̇a . (30)

From Eq. 24 it follows immediately that

Gv =
1

m
(H0a −H0p H

−1
pp Hpa) . (31)
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4.1 The Choice of Metric

Consider a planar triple pendulum having two actuated joints. How is ∆q̇a to be chosen for
this robot? If only one joint is to be used for balancing then the two obvious possibilities
are [1 0]T and [0 1]T; but what if both are to be used in some combination? Suppose, for
example, that the two joints are to be used in a ratio α : 1 and the problem is to find the
best value for α. There are now several possibilities for ∆q̇a, depending on the choice of
metric: for example, [α 1]T/β with β = 1+ |α|,

√
1 + α2 or max(1, |α|), which correspond

to an unweighted 1-norm, 2-norm and ∞-norm, respectively.
Choices like these directly affect both the values of the velocity gains and the com-

parison of one gain with another; so it is important to adopt a disciplined approach to
choosing a metric. The choice must be justifiable in some objective sense, otherwise the
computed values could be viewed as arbitrary.

Although it is not possible to anticipate every circumstance in which a velocity gain
might be used, it is possible to give some general guidelines, as follows. If the main con-
cern is with joint position or velocity limits, and each joint’s limits are independent of
the others, then an ∞-norm is appropriate because each joint can reach its motion limits
independently but their effects on the CoM sum. So moving two joints simultaneously
at their maximum velocities will have a bigger effect than moving only one, and there-
fore should be given a larger velocity gain. Alternatively, if the main concern is with
energy consumption, and the energy cost of moving a joint is linearly proportional to
its velocity, then the 1-norm is appropriate because it scales the motion according to its
energy cost. If the energy cost were proportional to the square of joint velocity then the
2-norm should be used instead. Another circumstance where the 2-norm is appropriate
is if balance performance is being considered alongside other performance measures, such
as manipulability indices, which are usually defined using 2-norms so as to give rise to
ellipsoids. In this case, using a 2-norm in the calculation of velocity gain puts it on the
same footing as the other performance measures.

Another issue to consider is the weighting of the norm. In general, it is preferable to
use a weighted norm because it can account more accurately for the physical attributes
of the robot. Obvious possibilities include weighting according to the position or velocity
limits of each joint, or according to the energy cost of moving each joint.

Yet another issue to consider is the effect of a nonlinear transmission from an actuator
to a joint. If the actuator has a fixed maximum speed, but the transmission ratio varies
with joint angle, then the joint has a configuration-dependent maximum speed. This
suggests that weights should, in general, be allowed to vary with the robot’s configuration.

5 Extension to 3D

In 3D the foot can make either a point or a line contact with the ground, the latter being
defined as contact at two or more points all lying on a single straight line. Any greater
degree of contact results in a polygon of support, and is equivalent to an area contact.
The case of a line contact can be handled using equations identical to the ones in the
previous section; so this section covers only the case of a point contact.

Consider a general spatial mechanism making a single point contact with a horizontal
supporting surface located in the x–y plane of a Cartesian coordinate system with the z

14



axis pointing up (3D world coordinates). The link that makes this contact (the leg) is
able to roll without slipping in both the x and y directions, and it is able to spin about the
contact normal. It therefore has three degrees of instantaneous motion freedom relative
to the supporting surface.

Rolling in 3D is a well-known example of a nonholonomic constraint, which we can
characterize with five position variables, qx, qy, q1, q2 and q3, and three independent
velocity variables, q̇1, q̇2 and q̇3, where q1, q2 and q3 are any set of Euler angles describing
the orientation of the leg, and qx and qy give the coordinates of the contact point. The
dependent variables q̇x and q̇y must be calculated from the values of the other variables
and a description of the shape of the foot. If the robot is balancing on a sharp contact
point then the rolling contact simplifies to a spherical joint and q̇x = q̇y = 0.

Overall, the robot has n degrees of velocity freedom, which can be partitioned into 3
passive DoF at the contact and n−3 actuated DoF. We therefore redefine q̇p = [q̇1 q̇2 q̇3]

T

and q̇a = [q̇4 · · · q̇n]T. We continue to assume the existence of the data structure rob,
describing both the robot and its contact with the ground, and the two functions gim and
cmpv, which must now perform their calculations in 3D. c and ċ are now 3D vectors, and
b is no longer needed.

The job of a balance controller in 3D is to bring the CoM directly above the support
point. This means either driving both cx and cy to zero, or making c point upwards. We
therefore define the 3D versions of the linear and angular velocity gains as follows:

Gv(∆q̇a) =

[

∆ċx
∆ċy

]

and Gω(∆q̇a) =
c×∆ċ

|c|2 . (32)

Gv is now a 2D vector, and Gω is a 3D angular velocity vector perpendicular to both c and
ċ that describes the rate of change of the direction of c. These definitions are compatible
with their planar counterparts, and simplify to the planar versions if the robot happens
to be planar and moving in a vertical plane.

The calculation of these velocity gains follows the same procedure as before: first ∆q̇p

is calculated from the given value of ∆q̇a using Eq. 19, then c and ∆ċ are calculated
using Eq. 20, and then the gains are calculated using Eq. 32. Alternatively, ∆ċ can be
calculated using Eq. 22; and Gv can be calculated directly from Eq. 24 provided that joint
0 is defined to be a 2-DoF joint allowing translations in the x and y directions.

5.1 New Issues in 3D

Although the calculation procedure is almost unchanged, two other aspects of the problem
have changed significantly: the gains are now vector-valued, and the robot is now capable
of falling in any direction in the horizontal plane. The latter implies that the balance
controller must now control two coordinates of the CoM, and therefore must devote two
degrees of actuated motion freedom to this task. So the balance controller requires two
virtual joints with linearly independent velocity gains.

Instead of a single scalar-valued velocity gain, the balancing performance of the robot
is now characterized by a pair of vector-valued velocity gains. How should we extract from
this data a single number quantifying the robot’s ability to balance? A reasonable answer
is illustrated in Figure 6, which shows two linear velocity gains, G1 and G2, plotted in the
x–y plane. It also shows the parallelogram of equal-magnitude combinations of these two
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Figure 6: Velocity gain as a function of direction in the x–y plane

gains according to an ∞-norm, which is appropriate if the motion limits of the two virtual
joints are independent. If a 2-norm is used instead then the parallelogram becomes an
ellipse. The figure also shows the shortest vector from the origin to the parallelogram,
labelled Gmin. The direction of this vector is the direction in which the robot is least able
to balance, and therefore most likely to fall, and so the magnitude of this vector provides
a reasonable measure of the robot’s ability to balance.

Another issue is that there are now three passive DoF at the contact, but the balance
controller is only controlling two of them. The uncontrolled freedom is the freedom of
the foot to spin about the contact normal. This motion must be taken into account,
because spinning motions do occur during balancing, but there is no need to control these
motions for the purpose of achieving and maintaining balance. Indeed, the spin freedom
is sometimes described as intrinsically uncontrollable, although this is only correct if
spinning is frictionless. The subject of spin control is separate from balance control, and
is outside the scope of this paper.

6 Rolling Contact Details

This section explains how to implement gim and cmpv for a general rolling contact. The
problem is that standard methods for calculating quantities like H and c expect the robot
mechanism to contain only revolute and prismatic joints; so a general rolling contact must
be modelled as a chain of revolute and prismatic joints which are subject to a kinematic
constraint. In particular, a 2D rolling contact will be modelled as two prismatic joints
followed by a revolute joint, and a 3D rolling contact by three prismatic joints followed by
three revolute joints. In both cases, the revolute joints are exactly as defined in previous
sections, and the prismatic joints are constrained so that their variables depend on the
revolute joint variables and the shape of the foot.

We now introduce two new functions, stdH and stdcm, which perform the following
calculations using standard methods:

H ′ = stdH(rob, q′) (33)

and
[co,∆ċo] = stdcm(rob, q′,∆q̇′) , (34)

where q′ is the given value of q (i.e., the value supplied to gim or cmpv) augmented
with the necessary number of prismatic joint variables; H ′ and ∆q̇′ are the similarly-
augmented generalized inertia matrix and velocity step vector, respectively; and co and
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Figure 7: Kinematics of rolling in 2D

∆ċo are the position and velocity steps of the CoM relative to the origin of the world
coordinate frame (i.e., not the contact point). To calculate the kinematics of the rolling
contact, we introduce two more functions, roll2 and roll3, which are described below.

Rolling in 2D

Figure 7 shows the kinematic model of a planar rolling contact. A coordinate frame is
fixed in the leg, and the three variables qx, qy and q1 give the position and orientation
of this frame relative to the 2D world coordinate frame, which is positioned so that its x
axis lies on the support surface. A fourth variable, ξ, serves to locate the contact point.
The kinematics are calculated by calling roll2 as follows:

[qx, qy, ξ, X, Y, Ξ ] = roll2(rob, q1) , (35)

where X = dqx/dq1, Y = dqy/dq1 and Ξ = dξ/dq1. With this data, gim calculates H

using the formula
H = GTH ′ G , (36)

where H ′ is calculated using Eq. 33 with q′ = [qx qy q
T]T, and

G =









X 0

Y 0

1 0

0 1(n−1)×(n−1)









. (37)

Likewise, cmpv(rob, q,∆q̇) calculates c and ∆ċ via Eq. 34 with

∆q̇′ =





X∆q̇1
Y∆q̇1
∆q̇



 , (38)

followed by

c = co −
[

qx + ξ
0

]

(39)

(ξ is negative in Figure 7) and

∆ċ = ∆ċo −
[

(X + Ξ)∆q̇1
0

]

. (40)
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It was mentioned earlier that velocity gains are not defined if there is a step change
in foot curvature at the contact point. This effect enters into the calculation via the
derivatives X , Y and Ξ , which depend on the curvature at the contact point, and which
undergo a step change in value if there is a step change in curvature.

Although the kinematics of a general rolling contact can be very complicated, it is
worth mentioning that if the leg happens to be a circular wheel, and the leg coordinate
frame is at the centre of the wheel, then ξ = Ξ = Y = 0 and y = X = R (the radius of
the wheel).

Rolling in 3D

The calculation procedure for a general rolling contact in 3D follows the same pattern as
for a 2D rolling contact, but with some differences in the details. First, the kinematic
model now has three prismatic joints, with variables qx, qy and qz, and the scalar variable
ξ has been replaced by a vector ξ = [ξx ξy]

T giving the x and y coordinates of the contact
point relative to the origin of the leg coordinate frame. The kinematics of the contact are
computed by

[qz, ξ,X,Y ,Z,Ξ] = roll3(rob, qp) , (41)

where X = dqx/dqp, Y = dqy/dqp, Z = dqz/dqp and Ξ = dξ/dqp. X , Y and Z are
now 1×3 matrices, and Ξ is a 2×3 matrix. H is still given by Eq. 36, but now with

G =













X 0

Y 0

Z 0

13×3 0

0 1(n−3)×(n−3)













(42)

and q′ = [qx qy qz q
T]T in Eq. 33. The formulae for c and ∆ċ are now

c = co −





qx + ξx
qy + ξy

0



 (43)

and

∆ċ = ∆ċo −





(

[

X

Y

]

+Ξ
)

∆q̇p

0



 , (44)

where co and ∆ċo are still given by Eq. 34 (now working in 3D), but with

∆q̇′ =









X∆q̇p

Y ∆q̇p

Z∆q̇p

∆q̇









. (45)

Observe that roll3 does not calculate qx and qy. This is because the rolling contact is
nonholonomic, and these variables must instead be calculated by integrating q̇x and q̇y.
However, it turns out that this calculation is unnecessary because H and c do not depend
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on these two variables. So it is possible to set qx = qy = 0 in the above equations without
altering the final results. (The same is also true of qx in the planar rolling case.)

Although the kinematics of a general rolling contact are very complicated, if the leg
happens to be a sphere, and the leg coordinate frame is located at the centre of the sphere,
then ξ, Ξ and Z are all zero, and qz equals the radius of the sphere.

7 Practical Examples

This section presents two examples of how velocity gains can be used to design and analyse
a robot’s balancing performance, and one example of their use in describing the physics of
balancing for the purpose of control. Two more design examples can be found in Driessen
(2015) and Featherstone (2013). For comparison, an example of designing a balancing
machine without the aid of velocity gains can be found in Leavitt et al. (2004).

7.1 Design of a Triple Pendulum

A planar triple pendulum balancing on a point is the simplest example of a balancing
machine having two actuated joints, and therefore presenting the control system with a
choice of motions to use for balancing. This section illustrates the use of velocity gain
to design a planar triple pendulum that is good at balancing. Joints 2 and 3 in this
mechanism are actuated, and joint 1 is passive.

Figure 8 shows contour plots of Gω for joints 2 and 3, plotted against q2 from 0 to π
and q3 from −π to π. (Gω is independent of q1.) The plots for negative values of q2 are
identical to the ones shown, but rotated by 180◦ about (0, 0). The colours red, orange,
yellow and green onwards can be regarded as bad, poor, OK and good. White corresponds
to positive values, and the boundary between red and white is the set of configurations
where balancing is physically impossible using the chosen joint.

The top two plots refer to an initial design in which all three links have a length of
0.3m and a mass of 0.5kg, the mass being concentrated at a point at the far end of each
link. (This is not unrealistic for reasons explained in Section 3.) The bottom two plots
refer to an improved design in which the link lengths are 0.2m, 0.25m and 0.35m, and the
masses are 0.7kg, 0.5kg and 0.3kg. As Gω is both mass- and scale-invariant, neither the
absolute masses not the absolute link lengths matter: only the ratios are important.

The improved design was obtained by manually exploring the parameter space and
comparing plots like those in Figure 8. However, the point here is not to advocate ad-hoc
design, but rather to illustrate the kind of feedback that velocity gains can provide to the
designer. Automated optimization is an indispensable tool, but optimizing blindly is not
a good idea.

In addition to their use in design, graphs like these can be used as maps for a high-level
controller, telling it which configurations are good for balancing and which are bad, and
telling it also which joints, or combinations of joints, are most effective for maintaining
balance in each region of configuration space.

The graphs show that the improved design has better velocity gains in most of its
configuration space, although there is a problem area in the vicinity of (π, 0) where the
gain changes sign. This is unlikely to be a problem in practice, as most or all of these
configurations will be unreachable. To give an idea of what the robot looks like, three
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Figure 8: Contour plots of angular velocity gain (Gω) for joint 2 (left column) and joint 3
(right column) of an initial design (top row) and improved design (bottom row) of planar
triple pendulum. Contours: white >0, red 0 to −0.06, orange −0.06 to −0.1, others as
shown in the top left plot. A, B, C: configurations shown in Figure 9

Figure 9: Three specimen configurations of the improved triple pendulum
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Figure 10: HyQ balancing on diametrically opposite legs (torso height 0.6m, leg configu-
ration C in Table 1)

configurations have been picked out and shown in Figure 9. It can be seen that config-
uration C is unreachable because of interference with the ground. The robot is straight
when q2 = q3 = 0.

The graphs also show that joint 2 has a better velocity gain than joint 3 almost
everywhere, and that the velocity gain of joint 2 improves with increasing angle. These
results are no surprise: joint 2 moves more mass than joint 3, so it is hardly surprising
that it has more effect on the CoM; and increasing q2 folds the robot so as to bring the
CoM closer to the support point, so that |c| in the denominator of Eq. 17 becomes smaller.
The blue regions in the graphs for joint 3 occur at configurations where the mechanism
is curled up, like configuration C, and the CoM is relatively close to the support point.
Most of these configurations will be unreachable.

An investigation of this kind can be used to analyze existing robots as well as design
new ones. With an existing robot, one cannot alter the joint velocity gains, unless one
is prepared to add masses here and there. However, one can compose maps like those
in Figure 8 to show which configurations are good for balancing and which are not, and
to show which joints, or combinations of joints, are the best to use. Adding mass is not
necessarily a bad idea: consider, for example, the balancing pole of a tightrope walker—a
relatively small additional mass that improves substantially the artist’s ability to balance.
A velocity-gain analysis can show how much mass is needed, where best to put it, and
how big an effect it will have.

7.2 HyQ Balancing

This section presents an analysis of the balancing ability of the hydraulic quadruped HyQ
Semini et al. (2011). It is proposed to make this robot balance on two diametrically
opposite legs in postures like the one shown in Figure 10. Specifically, the two raised legs
will be held in a fixed configuration, so that they behave like an extension of the torso,
and the robot will balance by tipping the torso about a line joining the hip centres (the
centres of the top cylinders in the figure) of the two supporting legs. The supporting feet
are positioned directly below the hip centres. The available parameters are: the angles
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Figure 11: Angular velocity gain versus torso height for the raised-leg configurations listed
in Table 1

left front leg right hind leg

A −90◦ 10◦ −20◦ −90◦ −10◦ 20◦

B −90◦ 70◦ −140◦ −90◦ −70◦ 140◦

C 0◦ 60◦ −120◦ 0◦ −60◦ 120◦

Table 1: Raised-leg configurations

defining the posture of the raised legs, and the height of the torso above the ground. The
latter is measured from the origin of the torso coordinate frame, which lies on the line of
tipping.

To calculate the velocity gains of this robot, for the purpose of balancing in this
particular manner, the first step is to define a kinematic mapping from the operational
space of balancing to the joint space of the robot. The latter consists of the 12 revolute
joints of the robot mechanism plus the torso’s 6 DoF relative to the ground. The former
consists of two virtual revolute joints: a rotation about the line joining the two supporting
feet, with joint variable θ1, which represents the robot’s passive freedom to fall over, and a
rotation about the line joining the two supporting hip centres, with joint variable θ2, which
represents the movement that the robot uses to balance. In effect, the kinematics function
maps an inverted double pendulum onto the robot. The calculation of velocity gain then
proceeds as explained in Section 2, as if the robot really were a double pendulum, but
with jsim and cmpv basing their calculations on the kinematically-mapped HyQ.

Figure 11 plots angular velocity gain against torso height for the raised-leg config-
urations listed in Table 1. These configurations are: (A) legs fully extended, pointing
sideways; (B) legs fully retracted, pointing sideways; and (C) legs partly retracted, point-
ing down (as shown in Fig. 10). The angles in this table are all within the HyQ’s joint
limits.

The first thing to notice about this graph is that there is a factor of 3 difference between
the best and the worst configuration; so the choice of configuration can be expected to
have a substantial effect on the quality of the robot’s balancing, and on the risk of falling
over. This alone is enough to justify a velocity-gain analysis of this robot.

The next thing to notice is that the main determining factor is torso height, which
accounts for more than a factor of two variation in velocity gain over the range considered,

22



Figure 12: Block diagram expressing the physics of balancing in the plane

whereas extending the raised legs sideways produces only a 20–30% improvement. When
the raised legs are not extended, they have little effect. One can deduce from this data
that the robot’s safest strategy is to crouch down as much as possible, unload the two
non-supporting legs, and then move them directly out to configuration A.

There are two sources of disturbance acting on this robot: IMU sensor noise and
unknown forces exerted by its umbilical. The IMU data sheet states a noise magnitude of
0.5◦, which will make the robot wobble. At the worst-case velocity gain of 0.08 (ignoring
the sign), a 0.5◦ error would require a 6◦ correction if the robot could do it instantaneously.
However, as the robot cannot move infinitely quickly, the actual correction magnitude will
be significantly in excess of 6◦ because gravity will be acting to exacerbate the balance
error during the course of the motion. Furthermore, the control system is aiming not
merely to arrest the robot’s fall, but to bring the robot back to its commanded position.
This requires tipping the robot in the opposite direction, which means that the control
system must necessarily overshoot.

The exact magnitude of the resulting wobbles will depend on many details, but simu-
lation studies on other robots suggest wobble magnitudes of 2 to 3 times the theoretical
minimum predicted by the velocity gain, so roughly 12–18◦ for the HyQ. Add to this
a disturbance from the umbilical, and one can see that there is a significant possibility
that the robot will reach its 30◦ torso rotation limit and lose its balance. In the best-case
configuration, the wobbles will be smaller by a factor of 3, and the risk of losing balance
will be greatly reduced.

7.3 Planar Balance Control

According to Featherstone (2015b), the physical process of balancing on a sharp point in
the plane can be expressed in the form of a block diagram like the one shown in Figure 12.
The symbols q2 and L denote the position variable of the actuated joint and the angular
momentum of the whole robot about the support point, respectively, and Y1 and Y2 are
parameters of the balancing behaviour.

This diagram applies to any planar robot, not just a double pendulum; so it makes
the assertion that the balancing behaviour of any planar robot can be characterized by
just two numbers. Furthermore, it is shown in Featherstone (2015b) that a very effective
balance controller can be obtained simply by treating the block diagram as a plant and
closing a feedback loop directly around it. This implies that the feedback gains depend
only on Y1, Y2 and the desired performance level of the controller.

So the two parameters Y1 and Y2 play a crucial role both in describing the robot’s
balancing behaviour and in controlling it. Their values are given by the formulae

Y1 =
1

mgT 2
c Gv

, Y2 =
−1

mgGv
, (46)
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Figure 13: A gyroscopic-force balancer

where m, g, Tc and Gv denote the robot’s mass, gravitational acceleration, the robot’s
time constant of toppling treating it as a single rigid body (i.e., a simple pendulum),
and the robot’s linear velocity gain in its current configuration. Thus, linear velocity
gain plays a central role in both describing and controlling planar balancing behaviour.
Clearly, velocity gains also play an important role in 3D balancing, but the details are
still a work in progress.

8 Gyroscopic Balancing

Throughout this paper it has been assumed that balancing is accomplished by means of
inertial forces. However, there is an alternative: balancing by means of gyroscopic forces.
Unfortunately, the velocity gains discussed so far cannot measure this type of balancing,
so this section explains briefly the reason why, and shows how to define an alternative
gain that can measure this kind of balancing.

Although the great majority of robotic balancing is accomplished using inertial forces,
there are examples in the literature of robots that employ gyroscopic forces instead or in
addition to inertial forces, such as the Gyrover (Brown and Xu, 1997). The big advantage
of gyroscopic balancing is that gyroscopic forces can be very large, so a balancer that
employs these forces can withstand much larger disturbances than one that uses inertial
forces. The Gyrover, for example, can fall over onto its side and still get up again. (The
Cubli can also get up from its side, but it uses sudden braking of a momentum wheel,
which is an inertial force (Gajamohan et al., 2012).)

An example of a gyroscopic balancer is shown in Figure 13. It consists of a foot that
makes a knife-edge contact with the ground, a middle body that is connected to the foot
via an actuated revolute joint, and a rotating flywheel connected to the middle body. It
resembles a planar inverted double pendulum, but with an important difference: the axis
of the actuated joint is at right angles to the line of contact instead of parallel to it. As
a result, this machine cannot balance by means of inertial forces, and its angular velocity
gain is zero everywhere. Nevertheless, if the flywheel is rotating then this machine can
balance.

The explanation for this situation is as follows. Inertial forces arise from accelerations,
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whereas gyroscopic forces arise from products of velocities. So, if an impulse is applied
at the actuated joint of an inertial-force balancer then it produces a step change in the
velocity of the CoM; but an impulse applied to a gyroscopic balancer produces instead
a step change in the acceleration of the CoM. This is a fundamental difference, and it
implies that a gyroscopic balancer needs a different control system to an inertial balancer.
It also implies that velocity gains cannot measure gyroscopic balancing ability because it
is a relationship between a velocity and an acceleration rather than between two velocities.

To quantify gyroscopic balancing ability in a device like the one in Figure 13, we could
define a gyroscopic acceleration gain as follows:

Ggv =
∆c̈x
∆q̇2

or Ggω =
∆φ̈

∆q̇2
(47)

in analogy with Eq. 1. Unfortunately, these gains now include the dimension of time,
and they are linearly proportional to flywheel angular velocity. So if a designer wished
to compare two designs then it would be necessary to choose the velocities of the two
flywheels (or their ratio), and the choice would have to be justifiable in some objective
sense. It is a similar problem to the one discussed in Section 4.1. One possibility is to set
the velocities equal; another is to set the momenta equal; and a third might be to set the
energy costs equal (i.e., the costs of maintaining the two flywheels’ spin rates).

A general procedure for calculating gyroscopic acceleration gains is set out below.
Note that this procedure accounts for all velocity-dependent forces. To extract the purely
gyroscopic effect from the others, repeat the procedure with the flywheel velocity set to
zero, and subtract the second result from the first.

1. Calculate ∆q̇ resulting from an impulse at the actuated joint such that the step in
the actuated joint velocity is unity.

2. Using an inverse dynamics function with gravity and acceleration terms set to zero,
calculate the vectors C(q̇) and C ′(q̇+∆q̇) containing the velocity-dependent joint-
space forces before and after the step.

3. Solve H∆q̈ = C ′ −C to obtain the acceleration step due to velocity effects.

4. Work out the change in CoM acceleration due to ∆q̈. (Tip: pretend that it is a
velocity step and use cmpv.)

9 Conclusion

This paper has developed and extended the idea of velocity gain, which was proposed
originally in Featherstone (2013). Velocity gains provide a means of quantifying a robot’s
physical ability to balance by expressing it as a ratio of the desired outcome, which is
movement of the centre of mass, to the amount of action at the actuated joints that is
needed to produce it. The larger this ratio, the less work the robot has to do in order to
maintain its balance, and therefore the better it is at balancing.

This paper defines linear and angular velocity gains for general planar and spatial
robots balancing on a single point or line, including a general rolling contact, and describes
several methods for calculating them via standard dynamics functions. It also discusses
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their properties, the related concepts of position and momentum gain, and how to adapt
velocity gain to the case of a robot balancing on an area of support.

The paper continues with three examples of use: facilitating the design of a planar
triple pendulum so as to be good at balancing, analyzing the balancing ability of an
existing hydraulic quadruped, HyQ, in order to choose a good configuration for a balancing
experiment, and describing the physical process of balancing for the purpose of balance
control. The HyQ example employs a kinematic mapping from the robot’s joint space to
a virtual double pendulum, thereby illustrating how velocity gains can be employed to
analyse proposed behaviours of robots as well as the robots themselves.

The paper concludes with a brief discussion of balancing by means of gyroscopic forces,
which is fundamentally different from the inertial-force balancing assumed in the rest of
this paper, and requires a special gyroscopic acceleration gain in order to quantify it.
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A Formulae for Gv and Gω

This appendix derives the formulae for Gv and Gω for the special case of a planar double
pendulum balancing on a sharp point, which is equivalent to a planar 2R mechanism with
a passive first joint. Referring back to Figure 4, Gv can be expressed as the sum of two
terms, Gv1 and Gv2, where Gvi is the contribution of joint i to the motion of the CoM.
Likewise, Gω can be expressed as the sum of two terms, Gω1 and Gω2. As joint 1 changes
only the direction of c, not its magnitude, we have

Gv1 =
∂cX
∂q1

∆q̇1 = −cY ∆q̇1 =
cY H12

H11

(48)

and

Gω1 =
∂φ

∂q1
∆q̇1 = ∆q̇1 =

−H12

H11
(49)
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(using Eq. 5). To calculate Gv2 and Gω2 we use the fact that c = (m1c1 + m2(c2 +
l))/(m1 +m2) and joint 2 affects only the direction of c2. Thus,

Gv2 =
∂cX
∂q2

=
m2

m1 +m2

∂c2X
∂q2

=
−m2 c2Y
m1 +m2

(50)

and

Gω2 =
1

c

(

b · ∂c

∂q2

)

=
1

c2

(

cx
∂cy
∂q2

− cy
∂cx
∂q2

)

=
m2

(m1 +m2)c2

(

cx
∂c2y
∂q2

− cy
∂c2x
∂q2

)

=
m2(cxc2x + cyc2y)

(m1 +m2)c2
=

m2 c · c2
(m1 +m2)c2

. (51)

So

Gv =
cYH12

H11
− m2 c2Y

m1 +m2
(52)

and

Gω =
m2 c · c2

(m1 +m2)c2
− H12

H11

. (53)

The formulae for H11 and H12 are

H11 = m1(r
2
1 + c21) +m2(r

2
2 + (c2x + l)2 + c22y) (54)

and
H12 = m2(r

2
2 + c2x(c2x + l) + c22y) . (55)

The easiest calculation procedure is to perform all calculations in link-1 coordinates, and
then use the coordinate transform to world coordinates to get cY and c2Y for Gv.
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