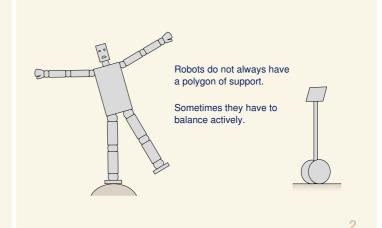
The Physics and Control of Balancing on a Point

Roy Featherstone 2015



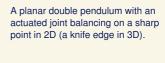
Balanci as a coi is also a and car such.

Balancing is usually seen as a control problem, but it is also a *physical process*, and can be analysed as

3

Physics of Balancing on a Point

The simplest case:



actuated joint

passive joint

4

Physics of Balancing on a Point

c_y c_y c_y c_y

Objectives:

1. Maintain balance: $c_x = \dot{c}_x =$

2. Follow commanded motion: $q_2 = q_{2c}$

 $\dot{q}_2 = \dot{q}_{2\mathrm{c}}$

The control problem:

The controller must control 4 variables $(c_x,\,\dot{c}_x,\,q_2$ and $\dot{q}_2)$, but has direct control of only one variable: τ_2

5

Physics of Balancing on a Point

centre

The control solution: (in principle)

If a control system succeeds in driving a variable x to zero, then a side-effect is to drive \dot{x}, \ddot{x} , etc. also to zero.

6

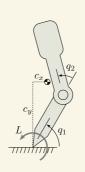
Physics of Balancing on a Point



The control solution: (in principle)

So we seek a new set of state variables to use in place of $q_1,\ q_2,\ \dot{q}_1$ and \dot{q}_2 with the property that controlling one has the side-effect of controlling the other three

Physics of Balancing on a Point



Analysis:

Let L be the angular momentum of the robot about the support point. L has the special property that \dot{L} is the moment of gravity about the support point.

7

Physics of Balancing on a Point

Analysis:

$$L = H_{11}\dot{q}_1 + H_{12}\dot{q}_2$$
$$\dot{L} = -mgc_x$$
$$\ddot{L} = -mg\dot{c}_x$$

Where H_{ij} are elements of the joint-space inertia matrix, m is the mass of the robot, and g is the acceleration of gravity.

Observe that L and \ddot{L} are linear functions of velocity.

Physics of Balancing on a Point

Analysis:

As L and \ddot{L} are linear functions of \dot{q}_1 and \dot{q}_2 , we can invert the equations and write

$$\dot{q}_2 = Y_1 L + Y_2 \ddot{L}$$

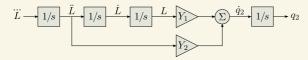
where Y_1 and Y_2 are functions of q_1 and q_2 only, and can be calculated easily via standard dynamics algorithms.

11

13

10

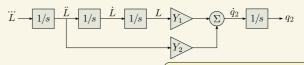
New Model of Balancing



The result is a new model of the balancing behaviour of the robot in which

- the state variables are \ddot{L} , \dot{L} , L and q_2 ,
- the input is \ddot{L} and the output is q_2 ,
- ullet controlling q_2 has the side-effect of maintaining the robot's balance

New Model of Balancing



The result is a new model of the bala in which

 $q_2 = \mathrm{const}$ $\dot{q}_2 = 0$ $\dot{q}_2 = 0$ $L = \dot{L} = \ddot{L} = 0$ $c_x = 0$

 $\dot{c}_x = 0$

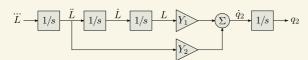
• the state variables are \ddot{L} , \dot{L} $\ddot{L} = 0$

• the input is \ddot{L} and the output is q_2 ,

ullet controlling q_2 has the side-effect of maintaining the robot's balance

12

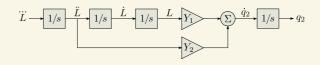
New Model of Balancing

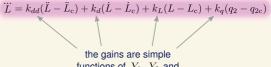


To control the robot we

- 1. map q_1 , \dot{q}_1 , q_2 and \dot{q}_2 to \ddot{L} , \dot{L} , L and q_2 ,
- **2.** apply a *simple control law* to calculate \ddot{L} ,
- 3. convert $\overset{..}{L}$ to au_2 or $\overset{..}{q}_2$ as required

Balance Controller

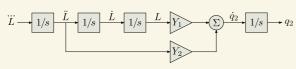




functions of Y_1 , Y_2 and the user's choice of poles

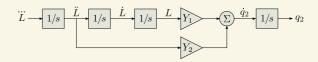
14

Balance Controller



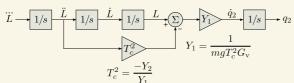
$$\ddot{L} = k_{dd}(\ddot{L} - \ddot{L}_c) + k_d(\dot{L} - \dot{L}_c) + k_L(L - L_c) + k_q(q_2 - q_{2c})$$
 optional

Balance Controller



$$\ddot{L} = k_{dd}(\ddot{L} - \ddot{L}_{c}) + k_{d}(\dot{L} - \dot{L}_{c}) + k_{L}(L - L_{c}) + k_{q}(q_{2} - q_{2c})$$

A Bit More Physics



- ullet T_c is the robot's natural time constant of toppling, treating it as a single rigid body
- ullet $G_{
 m v}$ is the *linear velocity gain* of the robot, which measures the degree to which motion of the actuated joint influences the horizontal motion of the CoM

A Bit More Physics

17

19

21

A robot's velocity gain expresses the instantaneous relationship between motion of the actuated joint(s) and the resulting motion of the centre of mass.

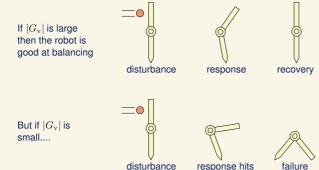
For the double pendulum,

$$G_{\rm v} = \frac{\Delta \dot{c}_x}{\Delta \dot{q}_2}$$

where both velocity changes are caused by an impulse at joint 2.

18

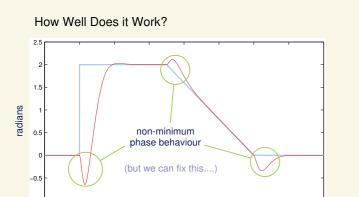
A Bit More Physics



disturbance

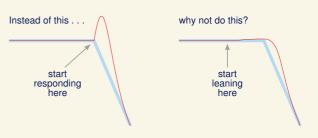
response hits joint limit

How Well Does it Work? fast accurate tracking step response of linear ramp seconds 20



seconds

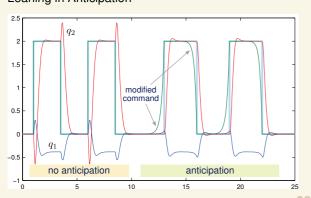
Leaning in Anticipation



This behaviour can be implemented by changing the command input to the controller.

22

Leaning in Anticipation



The End

Further reading:

http://royfeatherstone.org/skippy/

http://royfeatherstone.org/publications.html