
Notes to Accompany the Slides

for Spatial Vector Algebra

by Roy Featherstone∗

Preamble The course is aimed at people who already know how to do elementary rigid-body
dynamics using 3D vectors. It follows the treatment of spatial vectors appearing in the book
Rigid Body Dynamics Algorithms, which should be consulted for more details. Another source
that may be useful is the Springer Handbook of Robotics, Chapter 2. Other materials relating to
this course can be found on Dr. Featherstone’s web site, including software to implement spatial
vector arithmetic. At the time of writing, the URL is “http://users.rsise.anu.edu.au/-
~roy/”. If that doesn’t work, try Google.

Slide 3 The scalar product can be written either m · f or f · m. Both expressions mean the
same. However, neither M

6 nor F
6 has an inner product, so the two expressions m · m

and f · f are not defined. Formally, this scalar product makes F
6 the dual vector space

of M
6, and vice versa.

Slide 4 We shall use the term abstract vector to refer to the quantity that is represented by a
coordinate vector. On this slide, m, f , d1 . . . d6 and e1 . . . e6 are abstract vectors, while
m and f are the coordinate vectors that represent m and f in the bases {d1, . . . ,d6}
and {e1, . . . ,e6}, respectively. The elements of a basis are always abstract vectors.

On this and some other slides, the symbols denoting coordinate vectors have been under-
lined in order to distinguish them from symbols denoting abstract vectors. This notational
device is used only in the few places where it helps the discussion.

Slide 5 A reciprocal basis is also called a dual basis. If we name the bases D = {d1, . . . ,d6} and
E = {e1, . . . ,e6}, then the basis pair (D,E) defines a single coordinate system covering
both M

6 and F
6, in which D defines the coordinates in M

6 and E defines the coordinates
in F

6. We call this a dual coordinate system. Spatial vectors are always expressed in dual
coordinate systems. Their usefulness is exactly the fact that if m and f represent m and

f in a dual coordinate system then m · f = mTf .

Slide 7 Rigid-body rotation always occurs about an axis, which is a line somewhere in space.
ω specifies the direction of this line, but does not say where it is. Thus, ω on its own does
not provide a complete description of the rotational motion, but the pair (ω, P ) does.

Slide 9 A body-fixed point is a point that maintains a fixed position relative to a rigid body.
If the body moves, then the point moves with it.

It can be helpful to imagine the whole of space to be filled with body-fixed points. As
the body moves, all of these points move with it, creating a flow of points everywhere in
space. In particular, there will be a stream of points passing through O, and vO gives the
velocity of this stream at O.

The important step that is happening on slides 8 and 9 is the dissociation of the measure-
ment point from the motion of the body. On slide 6, P is a body-fixed point and vP is
the velocity of P . By slide 9, we have established O as a fixed point in space, and defined
vO to be the velocity measured at O.
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Slide 13 Ox is the x axis of the coordinate frame. dOx is therefore a unit rotation about the
x axis, and similarly for Oy and Oz.

Slide 14 Spatial vectors are normally written using standard vector notation. Thus, the sym-
bol for spatial velocity would normally be v. However, this practice results in a few name
clashes between spatial vectors and other kinds of vector. To resolve this problem, we
add a hat to the symbol denoting the spatial vector wherever there is a risk of confusion.
On this slide, the symbol v̂ is used to denote spatial velocity in order to avoid possible
confusion with the symbols vO and vP , which denote 3D linear velocities; but no hats
appear on the symbols dOx, dOy, etc., because there is no need. Hats can also be used to
emphasise that a particular quantity is spatial.

Slide 15 The expression v̂ = ωxdOx + · · · + vOzdz on slide 14 is invariant in exactly the same
sense that the expression ω = ωxi + ωyj + ωk on slide 11 is invariant. If we choose a
different coordinate frame then the basis vectors will be different; but the coordinates will
also be different, and these differences cancel out in the sum.

Slide 17 The notation

[

ω

vO

]

appearing on this slide is very convenient, and in widespread use.

However, it is important to remember that this notation is simply a short-hand way of
listing the six Plücker coordinates of a spatial vector. A spatial vector is not an ordered
pair of 3D vectors.

Slide 19 In the classical treatment of rigid-body dynamics, f and nP would be described as
the resultant and the moment about P of a system of applied forces.

Slides 22 & 23 Moment or couple ‘in the x direction’ means that the vector representing the
moment or couple points in the x direction.

Slide 27 Using the numeric notation on slide 5, we have dOx = d1, ex = e1, dOy = d2, and
so on. This particular ordering of the basis vectors causes the three angular Plücker
coordinates to be listed ahead of the three linear coordinates. It is possible to choose a
different ordering of the basis vectors, which implies a different ordering of the Plücker
coordinates. In particular, some authors prefer to have the linear coordinates appear
ahead of the angular ones.

Slide 28 r̃ is the matrix that implements the vector cross product for 3D vectors: r̃ p = r×p

for any p. For this reason, r̃ may also be written r×. Note that r̃T = −r̃.

E is the coordinate transformation matrix from A to B coordinates for 3D vectors. Thus,
E is a 3 × 3 rotation matrix. To be more explicit, we could have written E as BEA.

The final equation on this slide follows from the requirement that the scalar product be
invariant with respect to a change of basis. If mA, mB , fA and fB represent m ∈ M

6

and f ∈ F
6 in A and B coordinates, then we require mT

A fA = mT
B fB for all m and f .

This implies that (BXA)T BX∗

A must be the identity matrix.

Slide 33 In analogy with r̃ (= r×) on slide 28, we can define a pair of 6× 6 matrices, v̂× and
v̂×∗, that implement the two spatial cross-product operations as follows:

v̂× =

[

ω

v

]

× =

[

ω̃ 0

ṽ ω̃

]

and v̂×∗ =

[

ω

v

]

×∗ =

[

ω̃ ṽ

0 ω̃

]

= −(v̂×)T .

Note that v̂× maps motion vectors to motion vectors, while v̂×∗ maps force vectors to
force vectors.
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Slide 34 The derivative of a motion vector is a motion vector, and the derivative of a force
vector is a force vector.

The general formula on this slide applies to differentiation with respect to any scalar, not
only time.

The two operators v× and v×∗ act like differentiation operators on motion and force
vectors, respectively, in exactly the same way that ω× acts like a differentiation operator
on 3D vectors: If a 3D vector u is rotating with angular velocity ω, but not otherwise
changing, then its time-derivative is u̇ = ω × u.

Slide 35 We originally defined O to be a point fixed in space. We now relax that definition to
allow O to have a nonzero velocity.

The formula on this slide is very closely analogous to the standard formula for differen-
tiating a 3D Euclidean vector in a rotating coordinate system. Expressed in the same
notation as used on the slide, the 3D vector formula is

[

d

dt
u

]

O

=
d

dt
uO + ωO × uO ,

where u is a 3D Euclidean vector, uO is the coordinate vector representing u in the
rotating coordinate system, and ωO is the coordinate vector representing the angular
velocity of the coordinate frame expressed in the rotating coordinate system.

Note that a Plücker coordinate system is moving if the coordinate frame has a nonzero
spatial velocity, whereas a Cartesian coordinate system is moving only if the coordinate
frame has a nonzero angular velocity. If the frame has a purely translational velocity then
it defines a moving Plücker coordinate system but a stationary Cartesian one.

Slide 39 The apparent discrepancy between vO = ṙ and v̇O 6= r̈ is simply because vO is
tied to O, whereas ṙ is tied to the body-fixed point that coincides with O at the current
instant. If these two points coincide at time t, then, in general, they will not coincide at
time t + δt. Thus, we have vO = ṙ at time t, but vO 6= ṙ at time t + δt.

Referring back to the example on slide 38, suppose we define r to be the position of a
body-fixed point relative to a point on the fixed rotation axis. It then follows that the
velocity of this body-fixed point is ṙ = ω×r, and its acceleration is r̈ = ω×ω×r (given
that ω̇ = 0). One can now easily verify that the spatial acceleration of this body is indeed
zero.

Slide 40 Yes, there really is no Coriolis term in the formula for summation of accelerations.
Nevertheless, the equation of motion correctly accounts for all dynamic effects, including
Coriolis forces.

Slide 42 Spatial inertia matrices are symmetric and positive-definite. (This is true in any dual
coordinate system, not just Plücker coordinates.) IO is the rotational inertia of the body
about O, and the equation IO = IC − mc̃c̃ is simply the parallel-axis formula expressed
in vector notation.

Slide 43 Observe that the coordinate transformation formula is a congruence transform. Such
a transform preserves symmetry and positive definiteness, but not eigenvalues. Spatial
inertias do not have meaningful eigenvalues.

Slide 44 Coriolis and centrifugal forces are contained within the term v ×∗ Iv.

The kinetic energy of a rigid body with inertia I and velocity v is 1

2
vTIv.
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Slides 45–49 Velocity constraints are typically obtained from position constraints. Suppose
the position of a rigid body is given in terms of a set of six generalized coordinates,
q1, . . . , q6. A single constraint on its position can be given by the constraint equation
φ(q1, . . . , q6) = 0, and a set of constraints by a set of equations, φi(q1, . . . , q6) = 0 for
i = 1 . . . nc, where nc is the number of constraints. Let J be the nc × 6 matrix of partial
derivatives, such that Jij = ∂φi/∂qj , then the motion subspace, S, is the null space of
J , and S is any 6 × (6 − nc) full-rank matrix satisfying JS = 0. The constraint force
subspace, T , is the range space of JT, so it is possible to choose T = JT.

Slide 55 This is not quite the complete algorithm. A complete version is as follows:

iXi−1 = XJ(qi)XLi (n+1Xn = Xee)

vi = iXi−1 vi−1 + si q̇i (v0 = 0)

ai = iXi−1 ai−1 + si q̈i + ṡi q̇i (a0 = −ag)

fi = (i+1Xi)
Tfi+1 + Ii ai + vi ×

∗ I i vi (fn+1 = fee)

τi = sT
i fi

This algorithm associates two coordinate frames with each joint i: one embedded in link
i−1 and the other in link i. The latter is defined to be the link coordinate system for link i,
and the algorithm performs all calculations pertaining to link i in link i coordinates. The
first line computes the coordinate transform matrix from link i − 1 to link i coordinates.
This matrix is the product of a constant matrix, XLi, and a variable matrix, XJ(qi). The
former depends on the relative locations of the two coordinate frames that are embedded
in link i − 1, and the latter is a function of the joint variable, qi, and also the joint type
(e.g. a code identifying whether the joint is revolute, prismatic or something else), which
is not shown. Xee is the transform from link n coordinates to the end-effector (or tool tip,
gripper, etc.) coordinate frame; and fee is the force exerted by the robot onto whatever
it is touching, holding in its gripper, etc.

ag is the acceleration due to gravity. By setting the base’s acceleration to −ag, rather
than zero, we can simulate the effect of gravity on the robot. This is simpler and more
efficient that explicitly calculating the gravitational force on each link. However, it does
mean that ai is not the true acceleration of link i.

The quantities XLi and Ii are constants in link coordinates, and their values would be
stored in a data structure describing the robot mechanism. Depending on joint type, si

may or may not be constant in link coordinates. If it is a constant (the usual case) then
we have ṡi = vi × si. If it is not constant, then both si and ṡi need to be calculated as
functions of the joint’s position and velocity variables.

Strictly speaking, this algorithm works in stationary link coordinates, which are station-
ary coordinate systems that coincide at the current instant with the moving coordinate
systems that are embedded in the links.
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