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RF  introduction

Introduction

differentiation and acceleration

This four-hour segment is divided into 3 parts and will cover the
following topics:

These slides, as well as more extensive teaching materials,
can be found at

http://royfeatherstone.org/teaching

dynamics

dynamics algorithms

1.

2.

3.
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Part 1:  Differentiation and Acceleration

This part will cover the following topics:

the derivative of a vector  (general case)

differentiation with coordinate vectors

the cross product matrix

spatial acceleration
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Definition

Let     be a general vector space.  For any vector            , if     is
a differentiable function of a scalar    then

This formula applies to anything that meets the mathematical
definition of a vector (e.g. matrices, tensors, linear mappings,
vector fields, . . . ).
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Example

If     is a coordinate vector then

So the derivative of a coordinate vector is its componentwise
derivative.
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Properties

the derivative of a vector is a vector

if           is defined
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Differentiation and Coordinate Vectors

Let                be the coordinate vector that represents a general
vector             in the coordinate system defined by the basis
                                           .

So and .

How do we find the coordinate vector that represents       ?
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Differentiation and Coordinate Vectors

Differentiate    to get       :

coordinates of

but this vector depends on the
derivatives of the basis vectors.

vector represented by

So the coordinate vector representing       in basis    is . . . .



S
um

m
er

 S
cr

ew
s 

20
24

RF  acceleration   07

Differentiation and Coordinate Vectors

the coordinate vector
representing

the derivative of the coordinate
vector representing

an n×n matrix in which column i contains
the coordinates of the vector
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Differentiation and Coordinate Vectors

three important special cases

rotating Cartesian coordinates

moving Plücker coordinates in

moving Plücker coordinates in

(all coming soon)
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Time Derivatives (Dot Notation)

With time derivatives it is convenient to use dot notation:

and so on.

However, there is a potential ambiguity with this notation when
used with coordinate vectors because it is not clear whether an
expression like       means                  or              .

So we shall use the following convention:

coordinate vector representing the derivative

derivative of the coordinate vector
(componentwise derivative)
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Euclidean Cross Product Matrix

The cross product of two Euclidean vectors can be written as
the product of a 3×3 matrix with a vector:

there are many
alternative notations
for this matrix
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Euclidean Cross Product Matrix

Some properties of this matrix are:

skew symmetry

implies

where

Note:  expressions like           mean              not
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Euclidean Cross Product Matrix

So the Euclidean cross product marix has many properties,
but the one we are most interested in here is this:

If a vector    is expressed in a Cartesian coordinate
system that is rotating with angular velocity     then

Can we do something similar for spatial vectors? Yes.

This implies that the columns of        are the coordinates of the
derivatives of the rotating basis vectors (see slide 8).
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Spatial Cross Product Matrices

If spatial vectors                 and              are expressed in a
Plücker coordinate system that is moving with spatial velocity
   then

and

where

These matrices are defined so that the columns of       and
are the coordinates of the derivatives of the moving Plücker
basis vectors in      and    , respectively.  (See slide 8.)
However, they do have other properties . . . .
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Spatial Cross Product Matrices

Some properties of these matrices are:

implies
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Spatial Acceleration

Spatial acceleration is the time derivative of spatial velocity.

But this is not the acceleration of any one body-fixed
point.  Instead, it is the rate of change in the velocity
at which successive body-fixed points are streaming
through the origin.
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Properties of Spatial Acceleration

             acceleration is a motion vector, and therefore has
the same coordinate transformation rule as velocity

acceleration is the time-derivative of velocity

if then (no Coriolis term)

The classical description of rigid-body acceleration uses the
quantities     and    (the position of a point in the body).  We can
express classical and spatial accelerations in terms of these
quantities as follows:

classical spatial
(not a true vector)
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Acceleration Example 1

If a body rotates with constant angular velocity about a fixed
axis then its spatial velocity is a constant, and so its spatial
acceleration must be zero.  But each body-fixed point is
following a circular path, and is therefore accelerating.

fixed axis
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Acceleration Example 2

A revolute joint with axis
and variable    is embedded in
body      , which is moving with
velocity      and acceleration     .
Body      is connected to      via
the joint.  Find expressions for
its velocity and acceleration.

because    is fixed in
and      is moving
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Acceleration Example 3

A cylinder of radius    rolls without slipping over a flat surface
at a constant angular rate    .  In this case the rotation axis
coincides with the line of contact, which is moving.  So the
spatial velocity is not a constant, and the spatial acceleration
turns out to be a pure linear acceleration of magnitude
in the    direction.

rotation axis on
line of contact

acceleration
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Understanding Example 3

To understand this result, it helps to think of the cylinder's
spatial velocity as a vector field,    , such that            is the
linear velocity of the body-fixed point in the cylinder that is
passing through the fixed point     in space at the current
instant.  The spatial acceleration is then obtained from
            .

rotation axis on
line of contact

acceleration
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Understanding Example 3

Here is the velocity field at time   .
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Understanding Example 3

And here it is again at time             .
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Understanding Example 3

And here is the difference between the two fields, shown in
red.  As you can see, all of the red arrows are the same
length, and they all point straight up.  So the vector field that
they form represents a pure translation in the    direction.
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Part 2:  Dynamics

This part will cover the following topics:

the duality between motion and force

momentum

inertia

the equation of motion

motion constraints  (on a single rigid body)
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Duality

Rigid-body dynamics is fundamentally about the duality between
motion and force.

In the special case of a single rigid body, M6 can be equated
with twist space and F6 with wrench space.

energy, power,
etc.

scalar product

velocity,
acceleration,

etc.

force,
momentum,

etc.
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Momentum

The spatial momentum of a rigid body is a force vector (i.e., an
element of F6) that provides a complete description of the body's
momentum.  It has two components:

linear momentum, and

intrinsic (or centroidal) angular momentum.

However, to express it in Plücker coordinates you also need the

moment of momentum about the origin.
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Momentum

Consider a rigid body having a mass of    , a centre of mass
(CoM) at    , and a rotational inertia of      about its CoM.

The linear velocity of the CoM is      , and the body is rotating
with an angular velocity of    .

mass

inertia
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Momentum

The body's linear momentum is the product of its mass with the
linear velocity of its centre of mass.

Linear momentum is a line vector (like linear force) having a line
of action passing through    .
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Momentum

The body's intrinsic angular momentum is the product of its
rotational inertia about the CoM and its angular velocity.

Intrinsic angular momentum is a free vector (like couple) having
properties of magnitude and direction only.
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Momentum

The body's moment of momentum about a given point     is the
sum of its intrinsic angular momentum and the moment about
of its linear momentum.
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Momentum

The Plücker coordinates of the
body's spatial momentum are then



S
um

m
er

 S
cr

ew
s 

20
24

RF  dynamics   09

Inertia

The spatial inertia of a rigid body depends on its mass, the
position of its centre of mass, and its rotational inertia about the
centre of mass.

mass:

CoM:
inertia
at CoM:

Spatial inertia provides a complete description of a rigid body's
inertia properties.
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Inertia

In Plücker coordinates, the spatial inertia of a rigid body is a 6×6
matrix having the following form:

mass:

CoM:
inertia
at CoM:

where

inertia at O
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Inertia × Velocity = Momentum



S
um

m
er

 S
cr

ew
s 

20
24

RF  dynamics   12

Properties of Spatial Momentum

Formula:

The spatial momentum of a rigid body is the product of its
spatial inertia and velocity.

Coordinate transform:

Momentum transforms like a force.

Sum:

The momentum of a set of rigid bodies is the sum of the
momenta of the individual bodies.
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Properties of Spatial Momentum

Conservation:

In the absence of an applied force, the spatial momentum
of a rigid body remains constant.

In the absence of external forces, the total momentum of a
set of rigid bodies remains constant.  Internal forces do not
affect total momentum.

Equation of motion:

The rate of change of a rigid body's momentum equals the
applied force.

The rate of change of the total momentum of a set of rigid
bodies equals the sum of the external forces.
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Properties of Spatial Inertia

Tensor:   Spatial inertia is the dyadic tensor that maps spatial
velocity to momentum.

Positive definiteness:

Kinetic energy:

Symmetry:

Momentum:
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Properties of Spatial Inertia

Coordinate transform:

Time derivative:

This is a congruence transform.  It preserves symmetry and
positive definiteness, but not eigenvalues or eigenvectors.

where     is the velocity of the rigid body.
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Properties of Spatial Inertia

Number of parameters:   A rigid-body inertia depends on only
10 parameters.  However, a more general spatial inertia (e.g.
for an articulated body) can depend on up to 21 parameters.

Composition:

If two rigid bodies are joined rigidly together, or move in rigid
formation, then the inertia of the composite body is the sum
of the individual inertias.
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Spatial Equation of Motion

Force equals the rate of change of momentum

is the spatial force acting on a rigid body
is the spatial inertia of the body
is the spatial velocity of the body
is the spatial momentum of the body
is the spatial acceleration of the body

This equation incorporates both Newton's and Euler's
equations of motion.
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Motion Constraints

If the motion of a rigid body is subject to a kinematic equality
constraint then its spatial velocity lies in a subspace
called the motion freedom subspace.

degree of (motion) freedom:

degree of constraint:

can vary with time.

(Inequality constraints will not be considered.)
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Motion Constraints

Motion constraints are maintained by constraint forces, which
have the following special property:

A constraint force does no work against any
motion allowed by the motion constraint.

(D'Alemberts principle of virtual work, and
Jourdain's principle of virtual power.)
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Motion Constraints

Constraint forces are therefore elements of a constraint-force
subspace,             , which is the orthogonal complement (in the
dual sense) of    .

is defined as follows:

This subspace has the property

and     provide equally good descriptions of the constraint.
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Matrix Representation

These matrices satisfy                  .

Note:   the subspaces are defined uniquely by the constraint;
but the matrices are not unique because their columns can be
any set of linearly independent vectors that span the subspace.

The subspace     can be represented by any
matrix     satisfying                         .

Likewise, the subspace     can be represented by any
                    matrix     satisfying                         .



S
um

m
er

 S
cr

ew
s 

20
24

RF  dynamics   22

Constraint Equations

If     is any velocity allowed by
the motion constraint then

where     is a
coordinate vector.

If    is a constraint force then

where     is a
coordinate vector.
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Constrained Motion Analysis

An Example

A force    is applied to a rigid body
that is constrained to move in a
subspace              .  The body has
an inertia of    and is initially at rest.
What is its acceleration, expressed
as a function of    ?

To solve this problem we must eliminate the unknown constraint
force     .
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Constrained Motion Analysis

Relevant Equations

A force    is applied to a rigid body
that is constrained to move in a
subspace              .  The body has
an inertia of    and is initially at rest.
What is its acceleration, expressed
as a function of    ?

Simplified Equations
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Constrained Motion Analysis

A force    is applied to a rigid body
that is constrained to move in a
subspace              .  The body has
an inertia of    and is initially at rest.
What is its acceleration, expressed
as a function of    ?

SolutionSimplified Equations
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Constrained Motion Analysis

This matrix is the apparent inverse
inertia of the rigid body (the inverse
inertia it appears to have, given the
constraint on its motion).  It is a
symmetric, positive-semidefinite
matrix with rank equal to
(the degree of motion freedom of
the body).  Also, as     is uniquely
defined by the problem, it follows
that this expression is invariant
with respect to the choice of matrix
    to represent the subspace.

Solution
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Part 3:  Dynamics Algorithms

Spatial vectors can be used to implement a wide variety of robot
kinematics and dynamics calculations.  However, we shall cover
only the two most important ones:

calculate the force needed to produce a given acceleration

forward dynamics:

calculate the acceleration produced by a given applied force

inverse dynamics:

In both cases, the function is given a data structure containing a
dynamic model of the robot.
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Dynamic Model

Consider a robot mechanism consisting
of N  bodies and joints, plus a fixed base,
connected together to form a kinematic
tree.

A dynamic model of this mechanism
must define:-

connectivity
joint types
geometry
inertia parameters
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Dynamic Model

the bodies are numbered in any order
such that each body has a higher number
than its parent

the fixed base is body 0, and serves as
the root of the tree

the connectivity is defined by a parent
array,     , such that          is the parent
of body

0

1

2

3

4

5 6

Connectivity

(so , etc.)
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Dynamic Model

the joints are numbered such that joint
connects body   to its parent

joint types are identified by type codes;
for example, 'R' and 'P' to identify
revolute and prismatic joints

some joint types also need parameters

Joints

0

1

2

3

4

5 6

1

2

3

4

5 6

Example:

(joint 1 is revolute, joint 2 is prismatic, etc.)
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Dynamic Model

two coordinate frames are defined for
each joint: one in each body

for joint     the frames are      in body
and            in body

Geometry

     serves as the link coordinate frame
for body (=link)

body

the geometry data is the set of constant
coordinate transforms            that locate
           relative to          for each
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Dynamic Model

The geometry data is used to calculate
the link-to-link coordinate transforms

body

where        is the joint transform for joint    ,
which depends only on the joint's type and
the value of the joint position variable
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Dynamic Model

Each body is characterized by its spatial
inertia,    , expressed in frame

Inertia Parameters

body

Summary
connectivity
joint types
geometry
inertia
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Dynamics Algorithms

The most important algorithms are:-

the recursive Newton-Euler algorithm (RNEA)

for forward dynamics:
the composite-rigid-body algorithm (CRBA)

for inverse dynamics:

Only the first two will be covered.

the articulated-body algorithm (ABA)
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Recursive Newton-Euler Algorithm

Initialization

gravity is simulated by a fictitious
base acceleration
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Recursive Newton-Euler Algorithm

the velocity of each body is the
sum of the velocity of its parent
and the velocity of the joint
connecting it to its parent

accelerations are defined likewise;
this equation is just the derivative
of the previous one
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Recursive Newton-Euler Algorithm

joint velocity is the product of the
joint axis vector, which defines the
direction of motion, with the joint
velocity variable, which defines the
magnitude

                    because     is fixed
in body   , which is moving with
velocity
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Recursive Newton-Euler Algorithm

the equation of motion calculates
the forces required to produce the
desired body accelerations
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Recursive Newton-Euler Algorithm

this equation calculates the spatial
force transmitted across each joint

      is the force transmitted from
body        to body   through joint  ,
and       is the sum of all forces
acting on body  , so

where        is the set of children of
body

(see diagram on next slide)
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Recursive Newton-Euler Algorithm

In this example, body   has two
children:     and   .  The net force
acting on body   is thereforebody body

body
where                          is the set of
children of body  .

so

If body   is a leaf node in the tree
then
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Recursive Newton-Euler Algorithm

the joint force variable is the
working component of the spatial
force transmitted across the joint
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Recursive Newton-Euler Algorithm

these two calculations use data
from the parent, so they must
proceed from the root towards
the leaves.

but this calculation uses data from
the children, so it must proceed
from the leaves to the root.
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Recursive Newton-Euler Algorithm
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Recursive Newton-Euler Algorithm

This variable
is initially equal to
but it is modified here
so that it becomes equal
to       by the time it is
used here.
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Forward Dynamics

The simplest way to calculate forward dynamics is via the
joint-space equation of motion

Method:

where      is the joint-space inertia matrix and      is the bias
vector, which contains every term that does not depend on
acceleration (gravity, Coriolis, etc.)

1. calculate
2. calculate
3. solve for



S
um

m
er

 S
cr

ew
s 

20
24

RF  algorithms   20

Forward Dynamics

     can be calculated using inverse dynamics:

so the only remaining problem is how to calculate     .  This is
accomplished using the composite-rigid-body algorithm (CRBA).

If

then

so
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Composite Rigid Body Algorithm

The kinetic energy of a robot mechanism is the sum of the
kinetic energies of its bodies.  So

where      and      are the velocity and inertia of body   .  The
velocity of body    can be expressed as the sum of the joint
velocities of every joint on the path between body    and the
base.  These are the joints that support body   .  If we define
         to be the set of joints that support body    then

(1)

(2)
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Composite Rigid Body Algorithm

1

2

3

4

5
6

1

2

3

4

5
6

joints that support body

bodies that are supported by joint

(these sets appear on the next slide)
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Composite Rigid Body Algorithm

On combining Equations (1) and (2) we get

This is a sum over all  ,  ,   triples in which both joints    and
support body   .  It can be rewritten as

(3)

(4)

where         is the set of bodies supported by joint   .  This is now
a sum over all  ,  ,   triples in which body     is supported by both
joints   and   .
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Composite Rigid Body Algorithm

One of the basic properties of the joint-space inertia matrix,     ,
is that the kinetic energy of the robot mechanism can be
expressed like this:

On comparing this equation with Eq. (4), we can see that

(5)

(6)
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Composite Rigid Body Algorithm

where                              is the inertia of a composite rigid body
consisting of all of the bodies in the set        .

We can simplify the expression in Eq. (6) as follows:

which leads to the following final expression for       :

(7)

(8)
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Composite Rigid Body Algorithm
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Composite Rigid Body Algorithm

variable      is
initialized to     here,
but is then modified here
so that it has the correct
value by the time it is
used here



S
um

m
er

 S
cr

ew
s 

20
24

RF  algorithms   28

Composite Rigid Body Algorithm

local variable
is initially expressed in
body   coordinates, but is
then transformed here
back through the ancestors
of body   in order to
calculate the off-diagonal
elements of      here
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Branch-Induced Sparsity

One consequence of Eq. (8) is that      has a special pattern of
zeros called branch-induced sparsity.  Basically,
whenever   and    lie on different branches.

Special methods exist to solve                          efficiently by
exploiting the branch-induced sparsity in     .

See Rigid Body Dynamics Algorithms by R. Featherstone
for more details; and Matlab implementations of these methods
can be found at http://royfeatherstone.org/spatial


