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Abstract

Mobile robots do not display the level of physical performance one would expect, given the specifi-
cations of their hardware. This research is based on the idea that their poor performance is at least
partly due to their design, and proposes an optimisation approach for the design of high-performance
mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots
that can exploit the maximum potential of today’s technology. This can be achieved by a systematic
optimisation study that is based on careful modelling of the robot’s dynamics and its limitations, and
takes into consideration the performance requirements that the robot is designed to meet. The approach
is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the
framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the
design and the behaviours to perform them. The optimisation methodology consists of several stages,
where various techniques are used for determining the design’s most important parameters, and for
maximising the chances of finding the best possible design based on the designer’s evaluation criteria.

The effectiveness of the optimisation approach is proved via a specific case-study of a high-
performance balancing and hopping monopedal robot. The outcome is a robot design and a set of
optimal behaviours that can meet several performance requirements of conflicting nature, by pushing
the hardware to its limits in a safe way. The findings of this research demonstrate the importance of
using realistic models, and taking into consideration the tasks that the robot is meant to perform in the
design process.





Part I

Robot Design Optimisation Approach





Chapter 1

Introduction

Recent technological innovations and an increasing demand for automation have lead to a rapid
evolution of the field of robotics; robots find applications in industrial environments [54], surgery
rooms [72], space exploration [36] and various other scenarios. Robot designs span from industrial
grippers [8], mobile rovers and legged robots [89], soft robots [90] and more. Each application might
require a different design, which can be task specific. For example, industrial robotic arms could be
used for packing, selecting or assembling products. These robots have usually a fixed base, and are
generally very precise, durable and display highly repeatable behaviours. However, they are mostly
confined in industrial environments, due to their lack of mobility.

On the other hand, mobile robots, and especially legged ones, offer high mobility and traversability,
but are more challenging to design due to the dynamic nature of locomotion, and are difficult to
control because they can fall and damage themselves or their surroundings. This leads to a higher
production cost, and increased mechanical, electronic and software complexity. One can easily notice
that commercially available robotic arms are widely used in industry and elsewhere; in contrast to
commercially available legged robots, which have only recently entered the market.

Motivated by the numerous applications and benefits legged robots can offer, and the lack of
complete and systematic approaches for building such robots, an optimisation approach to facilitate
the design of high-performance legged robots is proposed in this thesis. This work contributes to the
field of robot design optimisation of legged robots by presenting an in-depth analysis on the design of
a monopedal robot which is simple because it has only one leg, but is governed by complex dynamics
and is difficult to control due to its instability. The results of this work provide a deeper insight in the
challenges faced during the design process of legged robots, and can be used for the design of more
complicated and potentially more useful machines, such as bipedal robots.

1.1 Topic

The topic of this thesis is the design of versatile high-performance mobile robots with the use of
realistic models and numerical optimisation techniques. The study treats together the optimisation
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of the design and its behaviours for achieving a set of performance requirements. The design and
behaviour co-optimisation is complemented by a meticulous optimisation approach that takes into
account the robot’s most critical components and limitations, the performance requirements, the
amount of available resources, and manufacturability criteria for the purpose of obtaining robot
designs that meet their design expectations, with fewer design iterations. This approach can drastically
reduce the production cost of legged robots. As a specific example, the proposed optimisation
approach is applied to the design of a high-performance balancing and hopping one-legged robot,
named Skippy.

Legged robots have been a topic of interest since the early 1980s, when Raibert [83] introduced a
2 D and a 3 D balancing and hopping machine. However, several decades had to pass until significant
progress was observed in the field of legged locomotion. Only recently, a miniature robot named
Salto displayed precise hopping and balancing skills in the work of Yim et al. [111] surpassing the
work of Raibert. Furthermore, advancements in robot design optimisation were presented in the work
of Ha et al. [46], where numerical optimisation techniques were used for the design and behaviour
co-optimisation of various types of robots. On the same line, the research presented in this thesis
focuses on maximising the physical ability of mobile robots with the use of optimisation techniques.
One of the key differences between the presented study and current literature is that realistic models
of critical components of the robot and their limitations are taken into consideration for achieving
multiple behaviours of conflicting nature. The study takes into account the design and the tasks
that the robot is designed to perform, so that the final design can meet a large set of performance
requirements that are close to the robot’s maximum physical potential. To achieve this, realistic
models of the robot’s hardware and its behaviours must be built, and a thorough optimisation study
for investigating the robot’s maximum potential must be performed.

1.2 Aim

The aim of this thesis is to demonstrate that legged robots are under-performing due to poor design
decisions, by introducing a new way for designing them. To do this, an optimisation approach is
proposed to facilitate the design process of high-performance legged robots. This approach aims
to investigate how to maximise the physical ability of legged robots to safely reach their maximum
physical potential, and reduce the gap between simulation and reality. To achieve this, careful
modelling of the robot’s dynamics is necessary, which can lead to robot designs that meet their design
expectations in fewer design cycles.

Nowadays, technology offers powerful, light and precise actuators, sophisticated sensors, and
a variety of materials with amazing mechanical properties, such as fibre composites or very strong
and light alloys. The available technology exists to allow robots to be much faster and more robust
than they currently are. So why are legged robots not widely used yet, and cannot reach the level of
performance one would expect given the specifications of their individual parts? Furthermore, what
would be a scientific approach to design robots that meet design expectations, without the need of
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several costly design iterations? Moreover, how can we create versatile robots that can be used in a
variety of applications and different tasks? Following these research questions, the main hypothesis of
the thesis is formed, which is that the poor performance of legged robots is a result of poor design
decisions, that were not a result of a proper scientific analysis of its mechanism and its performance
objectives.

State-of-the-art research focuses on robot designs that are optimised to perform a relatively small
set of tasks, and as a result the effect of different behaviours on the design of the robot is not properly
explored. In addition, several design studies neglect to model behaviours and limitations of important
components of the robot, resulting in designs that do not meet their performance requirements in
reality. Finally, a robot’s design has an inherent relationship with the tasks it is designed to perform.
This means that different designs might perform better or worse in various tasks. For this reason the
design and the behaviours of the robot must be treated together and co-evolve for obtaining capable
robots; something that is not always the case in the robot-design literature.

1.3 Contribution

Robots are intelligent machines designed to increase the human standard of living and make our lives
safer. The main contribution of this thesis is a robot-design optimisation approach to facilitate the
design process of legged robots for making them more robust, reliable, and capable for the tasks
that they are designed to perform. Thus, a new way of designing mobile robots may be arrived at.
In addition, the findings of the examined case-study, which focuses on the design of a one-legged
robot, can provide insights on the fundamental principles of legged locomotion, and aid or be directly
applied to the design of more complicated legged robots such as bipeds, that can find immediate
applications in numerous real-life scenarios.

Robot design is the discipline where intelligent machines are designed for the purpose of serving
and assisting humans. In the design process multiple mechanical and electrical parts, each with its
own complexity, capabilities and limitations are combined to create a robot. However, the complexity
of all these components, together with the robot’s intended use, make robot design a challenging task.

To overcome this issue, a more systematic approach must be followed. A robot’s most critical
parts must be accurately modelled, so the design can be tested in realistic virtual environments. This
procedure can be much faster and cheaper than building and testing multiple real prototypes, and
can even result in unprecedented performance, for the simple reason that many more robots can be
designed and tested in simulation, rather than would have been possible in reality.

To address the design problem, an optimisation approach is proposed, which is divided into
two parts: (1) an optimisation framework, and (2) an optimisation methodology. The optimisation
framework is designed to exploit the inextricable relationship between a design and its behaviours by
splitting the process into two interconnected optimisation layers. In the first layer, robot designs that
can achieve a set of performance requirements are sought, and in the second layer the design’s best
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behaviours to achieve these requirements are sought. The result is a set of robot designs that can meet
the required performance objectives, and the optimal behaviours to achieve them.

This is an example of mechanism and behaviour co-optimisation, which means a joint or mutual
optimisation of both the behaviour and the mechanism of the robot. Initially, only the performance
objectives are given, along with those aspects of the design that have already been decided. The
objective is then to find both the physical parameters of the best mechanisms and the behaviour
parameters of their best behaviours. Observe that the term ‘behaviour’ is used to describe what
exactly the robot does, and the term ‘performance objective’ to describe the required outcome of that
behaviour. A behaviour is then awarded a score according to how well it meets its objective; and the
lower layer optimiser seeks the behaviour with the best score. Furthermore, the proposed approach
optimises the mechanism of a robot design; however, it is not limited to only that. The definition of a
mechanism excludes parts such as actuators, power supplies and sensors; but these parts and their
limitations are taken into account in the proposed approach.

Together with the optimisation framework, a methodology for performing the experiments is
proposed. The methodology aims: (1) to increase the chances of finding the best possible design
(the search space is substantially large in most cases) for the desired tasks, (2) to help gain a deeper
understanding of the examined system, so that appropriate design decisions can be made, (3) to
obtain a final design that is robust, and can achieve the desired performance, even in the presence of
manufacturing and modelling errors.

A limitation of this approach is that significant effort is required for obtaining and implementing
realistic models of the robot’s hardware. For example, to model the behaviour of some components
(e.g., springs) specialised equipment might be required (e.g., tensile measurement machines) in
order to estimate model parameters. In addition, a deep understanding of a robot’s hardware is
required, and development of sophisticated software for the robot’s model. Furthermore, accurate
models are computationally expensive, which might result in experiments which last long periods of
time. Nevertheless, an experienced designer in an appropriate workplace can overcome all of these
limitations.

The effectiveness of the proposed optimisation approach is shown via a case study on the design
of a high-performance robot. The study focuses on legged robots, and more specifically on the design
of a versatile and agile one-legged robot that is capable of achieving multiple athletic feats. The
final result is an optimal design capable of meeting a large number of performance objectives. The
behaviours of this design are presented in simulation, and demonstrate that the proposed approach can
result in robot designs that can display a plethora of impressive athletic behaviours, which come close
to the maximum potential of their individual components in a safe way.

1.4 Outline

This thesis is divided into two parts. The first part presents a general idea for robot design optimisation,
and the second part presents a specific example of the general idea via a case study on a one-legged
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hopping and balancing robot. The rest of this thesis is organised as follows.

Part I: Robot Design Optimisation Approach. This part provides a broad introduction to the
field of mathematical optimisation, robot design optimisation, and introduces the proposed design
philosophy.

Chapter 2: Background: Mathematical Optimisation. Introduction to mathematical opti-
misation and important concepts. The chapter presents various optimisation problem types and
approaches so that the different problems in robot design can be classified and addressed.

Chapter 3: Related Works: Robot Design Optimisation. Related works in the field of robot
design optimisation are presented and critically evaluated. A comparison with the proposed
approach is presented and a discussion on the gaps this study helps to fill.

Chapter 4: Optimisation Framework and Methodology. The main contribution of this the-
sis is presented, which is a robot design optimisation approach, which consists of a framework
and a methodology.

Part II: Case study: Skippy, a hopping Monopedal Robot. In this part, the proposed design
optimisation philosophy is applied to the design of a high-performance monopedal robot.

Chapter 5: Building a Model: Hardware and Behaviour. This chapter presents the hard-
ware and behaviour models of the Skippy robot, which is a one-legged balancing and hopping
machine.

Chapter 6: A Versatile Hopper. The proposed optimisation approach is applied to the design
optimisation of Skippy. The objective is to obtain a single design capable of achieving a
large set of demanding performance objectives, including a 3 m vertical hop and a 2 m triple
somersault. The final result is an optimal design and its optimal behaviours, which are presented
and analysed.

Chapter 7: Discussion

Chapter 8: Conclusion





Chapter 2

Background: Mathematical
Optimisation

Optimisation is the act of making something better. An example of optimisation is trial and error,
which is the oldest and most commonly used method for improving something. However, trial and
error is mainly based on arbitrary decisions, and can be ineffective when one is facing complicated
problems. With the advance of science and engineering, the former ‘art’ of optimisation, which was
based solely on one’s experience and imagination, started to acquire a more systematic and quantitative
form, and was coined with the term mathematical optimisation or mathematical programming. As the
name suggests, mathematical optimisation is concerned with finding the best value of a mathematical
formula. This formula, which is also called the objective function, could be a single function or even
a complicated model of a real system that consists of many interconnected formulas and conditions.
The output value of the objective function is the value we wish to optimise, and this can be achieved
by finding the input value to do so. The simplest optimisation problem is to find a formula’s maximum
or minimum point, such as minimising the manufacturing cost of a product.

Optimisation formulae were proposed as early as the 1630s by Pierre De Fermat with Adequality
and the Euler-Lagrange equation for calculating the maximum or minimum of a mathematical function
in the 1750s. Iterative methods also appeared in 1600s with Newton’s Optimisation Method for finding
the roots of differentiable functions and the Gauss Method (1800s) for solving the least squares
problem, which is used for minimising the error in data fitting applications, such as determining the
orbit of celestial bodies.

Several advancements were made in mathematical optimisation during the 20th century, where
the field started to become more formalised. The invention of methods such as the Simplex Algorithm
by Dantzig (1947) to solve linear optimisation problems; the duality principle discovered by John
von Neumann, also in 1947, which provides an upper or a lower limit to the value of an optimisation
problem; and the Karush–Kuhn–Tucker Conditions for optimality (1951) further popularised the field
and its applications. The introduction of computers and the large computational power that came
with them facilitated the application of mathematical optimisation and allowed its widespread use.
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Today, optimisation is an essential part of numerous science and engineering fields such as: astronomy,
geodesy, medicine, manufacturing, transportation, finance, economics, artificial intelligence, robotics
and more.

2.1 Optimisation Problems

Optimisation problems can be categorised into a plethora of different fields and sub-fields based on
a set of characteristics. These characteristics include the nature of the problem; for example, is it
deterministic or non-deterministic (i.e., is there noise in the system), is it differentiable, is it linear or
non-linear and so on.

The aim of this chapter is to introduce the reader to the field of mathematical optimisation and
its most important problems, methods, applications and concepts. The information presented in this
chapter is essential for understanding why optimisation of robot design is a difficult problem to solve,
and how it can be approached. Mathematical optimisation is a vast field, so elaborate details about
concepts and proofs are kept to minimum to preserve the compactness of this thesis.

In this thesis only the main optimisation fields and sub-fields will be discussed with a focus on
the most relevant ones for robot design. Classifying an optimisation problem with other similar
problems is an important step to understand how challenging would be to solve it, and consequently
to estimate the resources to do so. Furthermore, many methods are tailored for solving specific
types of optimisation problems, and thus the selection of the most appropriate algorithm can result
in significantly better and faster results. For this reason, in this chapter various problem types are
presented with some example applications that demonstrate why solving each problem is important.
This section presents the basic concepts and mathematical definitions of optimisation problems as
well as a short discussion on the different types that exist. The next section will deal with the various
methods for solving optimisation problems and lay out the basic concepts for selecting the most
appropriate method for a given problem.

Before the miscellaneous optimisation sub-fields are discussed, the basic concepts of optimisation
and a formal mathematical definition must be presented. A general mathematical formalisation of an
optimisation problem can be the following:

min
x

f1(x), f2(x), ..., fi(x) i ∈ I

s.t. g j(x)≤ G j, j ∈ J
hk(x) = Hk, k ∈ K
xL ≤ x ≤ xU , xL,xU ∈ Rn.

(2.1)

An optimisation problem can be described by the following.

1. x: are the input or independent variables. Depending on the problem x ∈ Rn, or x ∈ Nn, or may
be a mixture of discrete and continuous variables.
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2. xL ≤ x ≤ xU is the set of all valid input values, which can be represented by the symbol Ω. xL is
a lower bound and xU is an upper bound to the input variables.

3. fi: are the objective functions with fi : Rn → R, which are to be minimised or maximised. I is
the set of indices for objective functions.

4. g j: are the inequality or non-binding constraint functions with g j : Rn → R. Every value
of g j(x) must be less than or equal to the value of G j. J is the set of indices for inequality
constraints.

5. hk: are the equality or binding constraint functions with hk : Rn → R. Every value of hk(x)
must be equal to the value of Hk. K is the set of indices for equality constraints.

Feasible set or F is the set of all solutions in Ω that satisfy all the constraints in Equation 2.1. A
problem is unfeasible (there is no solution to it) when F = /0. If K and J are empty (there are no
constraints) then F = Ω.

Optima are the solutions of interest in an optimisation problem. Optima can be found at critical points.

Critical point of a mathematical function is a point where the derivative does not exist or it is equal
to zero. If the function is differentiable and the first derivative at that point is zero then it is called a
stationary point. There are three different types of critical points.

1. Minimum points, which are also extremum points. In these type of problems the goal is to find
the minimum value of the objective function (e.g., minimise the cost of production).

2. Maximum points, which are also extremum points. Problems where the maximum value is
sought (e.g., maximise the performance of a robot).

3. Saddle points or equilibrium points. These points are not extrema and are solutions of interest
in equilibrium optimisation problems. These type of problems examine the interaction or
collective behaviours of multiple entities with each entity seeking to minimise or maximise a
set of objective functions. Equilibrium optimisation problems are studied in the field of Game
Theory, which finds applications in economics and cooperative games [18]. This thesis does
not address equilibrium optimisation problems, and hence for the rest of this thesis the term
optimisation problem will always refer to a maximisation or minimisation problem.

Existence of optima—one of the many challenges in mathematical optimisation is that in most cases
there is no prior knowledge regarding the existence of optimal solutions. This means that an optimal
solution may not exist at all (see left plot in Figure 2.1), and searching for something that does not
exist results in wasted resources.

If certain conditions are met the Extreme Value Theorem (Weierstrass Theorem) can guarantee
the existence of optima. Specifically if the objective function f is continuous and the set of feasible
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x* x1* x2*

Figure 2.1: Existence of optima. Left: no global optimum exists (function e−x goes to zero as x goes
to ∞); centre: a single optimum exists at x∗; right: two global optima exist at x∗1 and x∗2.

values Ω is compact (bounded and closed) then it has at least one maximum and minimum value.
However, in complex problems where little information is known about the objective function and its
properties it is difficult to know in advance if any optima exist. Figure 2.1 demonstrates the possible
cases about the existence of an optimum, which are:

1. it exists and it is unique,

2. it exists but it is not unique,

3. it does not exist.

The most ideal scenario would be the first one. Several problems exist though that have many
optimal solutions.

Unimodal—a function f : R→ R is unimodal when for a value m ∈ R is monotonically increasing
for x ≤ m and monotonically decreasing for x ≥ m ∀x ∈ R, or alternatively:

m ∈ R s.t. f (x)%−% ∀x ≤ m and f (x) 1−1∀x ≥ m. (2.2)

In this case f (m) is an extremum point of f that has the smallest value over its domain and is a
minimum and a global optimum [12]. All the definitions and examples in this chapter will be given for
the minimum extremum, unless stated otherwise; however, the same reasoning holds for maximum
extremum. If x is a vector and not a scalar the function is called Quasiconvex.

Multimodal—a function f : R→ R is multimodal when ∄ m ∈ R that can satisfy Equation 2.2 for
the entire domain of f . Such functions can be locally unimodal in a defined interval [a,b] for a,b ∈ R.
In this case, the local value m, which is a local extremum is also called local optimum. A multimodal
function may have several local optima out of which one or more can have the single best value. The
extremum points with the best value are called global optima. If x is a vector and not a scalar the
function is called Non-Quasiconvex.



2.1 Optimisation Problems 27

As shown in the definition of an optimisation problem (Equation 2.1) depending on the examined
problem there can be one, many or no objective functions, and for the first two cases the concept of a
global optimum varies.

No objective function—in this case the objective is to find the Feasible Set of solutions F , if there
exist any.

Single-Objective Function—when there is only one objective to optimise. For this type of problems
the optima can be defined as following.

• Local optimum is a solution that cannot be improved by values in its close proximity. Alterna-
tively for an objective function f : Ω → R a point x∗ ∈ Ω is a local minimum:

if ∃ δ > 0 s.t. f (x− x∗)≥ f (x∗) ∀ x with ∥x− x∗∥< δ . (2.3)

Multi-modal objective functions can have several local optima. A local optimum that has the
best value of all the local optima is also called a global optimum.

• Global optimum is a solution x∗ ∈ Ω that has the best value out of all feasible solutions or
alternatively:

∀x ∈ Ω f (x∗)≤ f (x). (2.4)

A local optimum in a function with a unique optimum is also a global optimum.

Multi-objective functions—in this scenario obtaining a single optimal solution is not as straightfor-
ward as in the single-objective case. In an ideal case an optimal solution can be a solution x∗ ∈ Ω that
outperforms every other solution in each of the objectives.However, this is rarely the case. The reason
is that in many problems the objective functions are correlated and have a relationship of conflicting
nature, which creates trade-offs. This means that improving one objective diminishes another one
(or even more) so the problem of finding a single optimal solution becomes more complicated. As
a result, the optimal solution depends on the decision maker’s (usually a human) perspective and is
usually the most acceptable solution based on the given circumstances. Examples of decision making
are discussed in the case study presented in Part II. The set of all optimal solutions is called the Pareto
set or the Pareto front [18].

Pareto front is the set of non-dominated solutions. A feasible solution is non-dominated when for a
given solution no better value can be obtained unless the value of another objective is sacrificed. In a
minimisation problem a solution x1 dominates a solution x2 if:
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Figure 2.2: Example of feasible solutions in a bi-objective (has only two objectives) optimisation prob-
lem. The solutions that the black line passes through constitute the Pareto front of this minimisation
problem.

1. fi(x1)≤ fi(x2) ∀i ∈ I, and
2. ∃ j ∈ I s.t. f j(x1)< f j(x2).

(2.5)

Nondominated solution is a solution x∗ that is not dominated by any other feasible solution. These
solutions constitute the Pareto front, which represents the solutions with the optimal trade-off between
all the feasible solutions. An example of a bi-objective optimisation problem and its feasible solutions
is presented in Figure 2.2. The Pareto front of optimal solutions includes all the points that the black
line passes through.

Multi-objective problems usually involve multiple parameters (high dimensionality of input and
output variables) and are inherently difficult to solve due to the fact that no efficient methods for
solving them exist, which will be discussed in more detail in the next section. This thesis deals with
this broad problem for the design optimisation of robots with the purpose of creating versatile robots
that can achieve a variety of conflicting objectives.

Proof of Optimality—as it is explained in the next section, a variety of methods exist for solving
optimisation problems. All of these methods may return a solution or a set of solutions for a given
problem. The question that naturally arises is: given a point, can we prove that this point is an
optimum (local or global)? The answer is yes, but only under certain conditions.

In the case of continuously differentiable, and constrained or unconstrained problems there exists
a set of necessary conditions that a point must meet to be a stationary point, and are called the First
order or Karush Kuhn Tucker Optimality Conditions (KKT). To identify if a stationary point is a
maximum, a minimum or a saddle point the Second Order Sufficient Conditions must be met, which
require the second-order derivatives of the objective function, and can only be applied to unconstrained
problems. Proofs and details about optimality conditions can be found in Boyd and Vandenberghe
[12].
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The drawback of such methods is that they require smooth objective functions and information
about their first and second derivatives, which is difficult to obtain in many problems. Furthermore,
these methods do not provide any information about local or global optimality. The absence of global
optimality conditions makes optimisation problems even tougher to solve due to the uncertainty
behind the global optimality of discovered solutions.

2.1.1 Computational Complexity

Before presenting the problem types in more detail, a short discussion about computational complexity
is essential for understanding why some type of problems are more difficult to solve, and in which
categories the problem of robot design and behaviour co-optimisation falls into. This is a broad
field in mathematics and computer science, so only the most basic concepts that will help evaluate
the difficulty of the examined problem are presented. A more elaborate discussion on the field of
computational complexity can be found in Arora and Barak [1].

Computational complexity theory provides us with the necessary tools to quantify a problem’s
difficulty. With it we can measure the difficulty of computational problems based on the amount of
resources that are required for solving them on a computer. This is useful for the following reasons:
(1) we can compare problems according to their difficulty, and (2) we can select the most efficient
methods for solving them, a topic that is discussed in the next section.

Models of computation are mathematical models that describe the input to output relationship
including how computation, memory and communication is organised. These models allow problem
types to be quantified based on their complexity. Complexity depends on the size of the input and the
instance of the problem (e.g., different values of the input variables). The basic and most important
factors taken into account when analysing the complexity of any method is its memory and time
requirements.

The most commonly used model of computation is the Turing Machine (TM). These theoretical
and general computing machines are popular for their simplicity, and the fact that any algorithm can
be represented by one of them [1]. The reason why the TM is shortly introduced is because it serves
as the basis for defining the complexity of a given problem family. The complexity of a given problem
is defined by the amount of discrete steps and memory an algorithm requires to execute on a TM.
Because the TM and computational complexity theory is out of the scope of this thesis only informal
definitions will be presented for the sake of argument.

Tractable Problems are problems that do not require many resources to be solved. Specifically,
tractable problems are the ones that have a polynomial input to output relationship. This means
that the required time to solve these problems increases in a polynomial way with the input size.
Problems with very high resource requirements are called intractable. Example of such problems
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have exponential input to output relationships and computation of an exact solution is sometimes
impossible for large input sizes.

Reduction is the process of transforming a problem A to another problem B. This process is important
because it shows that problem A is at most as difficult as problem B, and if there is a method for
solving the latter then the former can also be solved with it.

Computational problems are classified into five categories with one of them being optimisation
problems which is the category of interest in this thesis. However, most of complexity theory is
defined in terms of decision problems mostly because they are easier to understand [1]. For this
reason, before defining the complexity of an optimisation problem, some terms in decision problems
must be defined so they can be extended to the former.

Decision Problems are the family of problems that their answer is simply a Yes or No. Any optimi-
sation problem can be reduced to a decision problem [2]. Their complexity can be classified in the
following categories:

• P (polynomial time) complexity;

• NP (non-deterministic polynomial time) complexity;

• NP-complete;

• NP-hard.

P decision complexity problems are generally tractable and can be solved efficiently because they
have a polynomial input to output relationship. This means that they can be solved in a fixed and
predetermined amount of steps that does not change dramatically with the number of inputs.

NP complexity problems on the other hand cannot be solved efficiently (in polynomial time) by
any known algorithm, and hence are more difficult to solve than P problems. These type of prob-
lems cannot be solved fast but given a possible solution it can be efficiently verified in polynomial time.

NP-complete is a decision problem that is: (1) NP, and (2) all problems in NP can be reduced to any
problem belonging to the NP-complete complexity class. This class is an indicator of a problem’s
intractability meaning the best known algorithms for solving it exactly require at least exponential time.

NP-hard type of problems are at least as hard as the hardest problems in NP (Papadimitriou and
Steiglitz [77]). This class does not only include decision problems, but also optimisation problems.
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Figure 2.3: P Vs NP. The left side is valid if P̸=NP and the right if P=NP.

P Vs NP—the aforementioned statements regarding the tractability of the presented problem families
are based on the widely believed assumption that P ̸=NP. This unsolved problem is one of the most
important problems in computer science and mathematics and argues if any problem in NP can be
solved efficiently (in polynomial time). Unfortunately, the answer to this question is unknown at the
time this thesis is written; however, it is widely believed that this assumption is not true [77], and in
fact solving this Millennium Prize Problem [53] comes with a million dollar prize (there are seven of
them and only one has been solved).

The consequences of this, are that when we face a general NP-hard optimisation problem we
should abandon the idea of solving it exactly because the problem is computationally intractable for
large input sizes. For this reason approximation methods or heuristics can be used that provide fast
solutions that are acceptable. Approximation algorithms provide some mathematical guarantee of
convergence for the returned solutions but heuristics on the contrary do not. This topic is discussed
in the next chapter together with more details on the various techniques for solving optimisation
problems.

2.1.2 Classification

An optimisation problem could be classified in any of the following categories

1. Continuous Vs Discrete Vs Mixed Integer Optimisation.

2. Unconstrained versus Constrained Optimisation.

3. None, One or Multi Objective Optimisation.

4. Convex Vs Non-Convex Optimisation.
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5. Non-linear Vs Linear Optimisation.

6. Deterministic Optimisation Vs Optimisation Under Uncertainly.

An optimisation problem may belong to a combination of any of these categories, which essentially
define the computational complexity of the examined problem. As mentioned earlier classifying an
optimisation problem is important because it provides the necessary information for selecting an
effective method for solving it.

1. Continuous Vs Discrete Vs Mixed Integer Optimisation—this classification is based on the
domain of the input variables.

Continuous Optimisation: the input variables can take any value from a bounded or un-
bounded set of numbers in R. Continuous problems are found in economics, control theory,
robot design and more. Examples of such problems are optimising the link lengths (continuous
variable) of manipulators for reducing contact forces.

Discrete or Combinatorial Optimisation—the input variables can take specific values, usually
with a fixed separation distance, from a bounded or unbounded set of numbers. Special cases
of discrete optimisation problems can be solved in polynomial time, but problems exist that
belong to the NP-hard class. One of the most famous combinatorial problems is the Travelling
Salesman Problem [77], and its decision version is an NP-complete problem. Given a list
of cities and the distance between each pair of them, the salesman must find what is the
optimal route to visit all of them once, and return to the city he started. Applications of such
problems include: scheduling problems, routing problems (e.g., in the distribution of goods for
determining the optimal route with the minimal distance that a delivery person should take),
assignment problems (e.g., assigning resources to individuals) and more (see Doringo et al.
[23] and Papadimitriou and Steiglitz [77]).

Mixed Integer Optimisation—a subset of the input variables are restricted to be discrete
values (e.g., integers) and the remaining variables continuous. These problems naturally arise in
engineering due to discrete components. For example, to maximise the performance of a robot:
(a) we can change the lengths of its links (continuous variable), and (b) select a DC electric
motor out of a fixed set of off-the-self parts (discrete variable).

Because this problem type has discrete decision variables, it is also a combinatorial type, and
hence an NP-hard problem. This means that it cannot be solved by any known polynomial-
time method. These problems are generally very tough to solve (Papadimitriou and Steiglitz
[77]), and have recently received a lot of attention due to the many applications they find in
engineering [93].

2. Constrained versus Unconstrained Optimisation.

Constrained optimisation—is the problem of finding the set of all feasible solutions. As
shown in Equation 2.1 there are two types of constraints:
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(a) binding or equality constraints, which must be met exactly, and

(b) non-binding or inequality constraints, which are allowed slack.

Constrained optimisation problems commonly occur in many science disciplines and engineer-
ing. An example is a manipulator trying to grab an object. The manipulator can move its joints
in a given range which are the joint limits (inequality constraints) and has to apply a specific
amount of force (equality constraint) to grab the object without letting it slip or damaging it.

Unconstrained Optimisation—in these type of problems the goal is to find optimum values
in all of the domain of the objective function f . In this case F = Ω.

Except very simple problems most real-life problems are subject to constraints. A commonly
used method for solving constrained problems is to formulate them as unconstrained problems.
This happens by adding a penalty value to the objective function, which is equivalent to the
amount of a constraint violation. More details on this are presented in Part II, where an
explanation of a specific algorithm implementation is presented.

3. None, One or Many Objectives—optimisation problems can be classified also according to
the number of objectives that they have.

No Objectives—problems where there is no particular objective. An example of such cases are
Feasibility Problems where solutions that are only required to meet the constraints are sought.

One Objective—problems with only one objective, such as minimising the energy consumption
of a robot.

Many Objectives—also called multi-objective problems where several objectives exist, such
as minimising the energy consumption of a robot while increasing its speed. For these type of
problems the concept of Pareto front is used to determine the feasible solutions with the optimal
trade-off. Naturally, the complexity of the problem increases with the number of objectives.

4. Convex Vs Non-Convex Optimisation, or Quasiconvex and Non-Quasiconvex optimisation
for objective functions with multiple arguments.

Convex Optimisation: is a sub-field of mathematical optimisation, where the problem has a
convex objective function and its feasible set is a convex set (Boyd and Vandenberghe [12]).
Specifically a function f is called convex when for each vectors x1 and x2 ∈ Rn:

f (θx1 +(1−θ)x2)≤ θ f (x1)+ f (x2)(1−θ), 0 ≤ θ ≤ 1,θ ∈ R. (2.6)

In a convex problem there can be: (a) no feasible solution (unfeasible), (b) one optimal value.
Convex functions are a special case of Quasiconvex functions. Most convex problems are
tractable problems and have P complexity. Due to their simplicity and tractability they find
many applications in several fields such as robot design, optimal control, function fitting and
interpolation, and statistical estimation (Boyd and Vandenberghe [12]).
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Non-Convex Optimisation—in this type of problem either the objective function or the con-
straints are non-convex. In non-convex problems there is either (a) no feasible solution (un-
feasible), (b) only one optimal solution (that is also a global optimum), or (c) multiple local
optima.

General non-convex problems might have several optima, making them harder to solve because
in order to verify a global optimum all the local optima must be found and be compared.
Convex problems have very convenient properties and are well understood making them easier
to solve than non-convex problems ,and much more efficient in terms of time (Papadimitriou
and Steiglitz [77]).

5. Non-linear Vs Linear Optimisation.

Linear Optimisation—this classification is based on the mathematical model of the system. If
both the objective function and the constraints are linear then the problem is also linear. These
problems are a special case of convex optimisation problems and many of them, but not all, can
be solved in polynomial time. Unless the objectives and constraints are linear, it is difficult to
know if the problem is convex.

Many problems in mathematics, economics, engineering, operations research and more can
be expressed as linear problems by taking simplifying assumptions. For example, under
the assumption that distances between destinations are straight lines (e.g., ignoring factors
such as traffic lights, or turns etc.) ‘the routing problem’ (mentioned earlier in this list in
the Combinatorial Optimisation category) of the delivery person becomes linear and can be
efficiently solved. This assumption might not be realistic but can provide us with a solution that
can work in most cases, and hence has a better practical use.

The field that deals with linear optimisation problems is called Linear Programming and in
general such problems are solvable in polynomial time. Because linear problems have one
optimal value, they are faster and easier to solve than non-linear problems that may have
multiple optima (Papadimitriou and Steiglitz [77]).

Non-linear Optimisation—a problem is non-linear when the objective function or at least one
of the constraints are non-linear. Non-linear problems can be non-convex meaning that they
may have multiple local optima. Currently there are no efficient methods for solving the general
non-linear problem (Boyd and Vandenberghe [12]), which in most cases is NP-hard.

In nature there are many relationships that cannot be described by linear models. Examples of
non-linear problems are: optimisation of non-linear chemical reactions or profiles of non-linear
springs and dampers which are widely used for storing or dissipating energy in trains, cars,
robots and more.

6. Deterministic Optimisation Vs Optimisation Under Uncertainly—this classification is
based on the existence or absence of uncertainty in the problem.
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Deterministic Optimisation—the output of the model is fully determined by the input. In
general, it is a standard practice to simplify problems and their computational complexity
by assuming that there is complete information on their model and inputs. Even though the
assumption of determinism results in approximate solutions, in many cases it can provide useful
results. This basically creates a trade-off between (1) accuracy when creating a sophisticated
model, and (2) simplicity (deterministic models are inherently simpler).

Optimisation Under Uncertainly

Stochastic Optimisation deals with problems under uncertainty. In most cases however,
complete information is difficult to obtain, and creating models that are very accurate is very
time consuming and sometimes even impossible (see Ben et al. [7]). Noisy measurements,
unmodeled factors that we do not take into account or even predictions about the future which
we cannot be certain of are only a few examples of uncertainty. To tackle this issue random
variables are used with specified probability distributions to characterise uncertainty, and the
expected value of the objective function is optimised.

Robust Optimisation—the purpose of this field is to find solutions where changes in a small
vicinity around them do not significantly change the output of the objective function [7].

One key difference between stochastic and robust optimisation is than in the former we assume
that we know the probability distribution of the random parameters, while on the later we do not.
Because we do not know the probabilities, in robust optimisation we optimise other measures,
such as the worst-case scenario.

Robust optimisation is widely applied in manufacturing. If the objective function of a design is
very steep at a given optimal point, then that point is not considered robust. The immediate
consequence of this is that small manufacturing or modelling errors can result in significant
degradation of quality of performance. A robustness study ensures the quality of a product does
not degrade even in the presence of errors.

In some applications robustness is more important than achieving the physically maximum
performance. In such cases the safest option is the best option. It is preferable to have a robust
design that can perform consistently despite the uncertainties, rather than aim for the best
outcome with a high chance of failure.

2.2 Optimisation Methods

In this section an overview of the different kinds of methods for solving optimisation problems is
presented, together with a set of measures for making comparisons between them. The aim is to
discuss how to select appropriate methods, and their criteria for their selection for solving problems
in robot design.
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2.2.1 Performance Measurements

These concepts help to understand the strengths and weaknesses of each optimisation method so that
the most efficient algorithms for solving a problem can be selected.

1. Computational Complexity of Algorithms—defines how efficient the algorithm is in terms
of resources. Important indicators are time and used memory for solving a problem.

Time Complexity—execution time is commonly used as a measure of complexity. It is
expressed as a mathematical formula that gives an approximation of the upper bound or worst-
case scenario of execution time.

The execution time of algorithms may vary for different problem instances of the same size so
the worst-case scenario is used, which is the maximum time that an algorithm may require to
produce a solution to a given problem. This can be expressed as a function of input to output;
however, because this function is difficult to find, and due to the fact that the behaviour is mostly
influenced by the factor with the highest order of magnitude the asymptotic behaviour of the
complexity is used.

Big Oh maps how execution time grows with the number of inputs. With this measure
algorithms can be classified based on their worst-time scenario for solving a given type of
problem. More formally: if f , g are two functions from N to N, then f = O(g) if there exists a
constant c s.t. f (n)≤ cg(n), for a sufficiently large n.

The common forms of O are the following and are presented starting from the easiest to the
most difficult case.

• O(1)—trivial solution, has a fixed upper bound in time, regardless of the input size.

• O(log n)—non trivial but easily solvable in short time even for large number of inputs.

• O(n): linear relationship, which is still easy and fast to solve.

• O(n2)—quadratic relationship, more expensive but still manageable.

• O(nk)—polynomial relationship, is expensive but sufficient knowledge exists for solving
such problems. Problems that can be solved by a polynomial time algorithm are called
polynomially solvable.

• O(kn)—exponential increase of required steps with number of inputs. Very expensive
to solve. Algorithms with this complexity are applied to difficult problems where small
knowledge exists for solving them. Intractable for large input sizes.

• O(n!)—commonly known as the brute force approach. It is intractable for problems with
many inputs. Algorithms with such complexity are applied to problems where the only
known way to solve them exactly is trying all the possible combinations of solutions.

Other Measures of Complexity—worst case analysis however is not the only factor that must
be taken into account when comparing algorithms. One of the most famous cases to prove the
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aforementioned statement is the Simplex versus the Ellipsoid method. Both methods can be
used to solve linear problems and the latter is polynomial time, but the former is not. However,
in practise the expected running time of some variants of the Simplex method is polynomial
and on average better than the Ellipsoid method (Papadimitriou and Steiglitz [77]). For this
reason other measures such as the average-case complexity must also be examined to have a
more complete comparison.

In practice CPU-time is also used for evaluating a performance. This measure is hardware
dependent and can be improved by: (1) buying more powerful computers, (2) using computer
clusters and performing parallel computations, or (3) optimising the software (yes, optimise the
software that optimises!) by using more efficient programming languages (such as C) or by
minimising software communication overheads between platforms.

2. Precision describes how close a solution returned by an optimisation algorithm is to an optimal
solution. Some algorithms may take a large amount of time or may never find an exact solution.

3. Convergence refers to how fast the algorithm can find optimal solutions. Convergence can be
expressed in number of iterations or steps. Algorithms that cannot guarantee convergence may
never terminate.

4. Completeness is the ability of a method to discover all the optimal solutions including the
global optimum.

5. Optimality describes if a method can guarantee to find the single best optimal solution (global
optmimum), out of the many optimal solutions (local optima). Global convergence is a
combination of the convergence rate and optimality criterion which describes if an algorithm
can guarantee to find the global optimum in some number of steps.

6. Robustness is the property of an optimisation algorithm to find the global optimum even when
starting far away from it, without converging prematurely to a local optimum.

2.2.2 Classification

Based on the problem type, complexity, the input size and what we wish to achieve, an appropriate
method and its implementation can be selected. Optimisation methods can be either:

1. Enumeration Algorithms,

2. Iterative Methods or

3. Heuristics.

Enumeration Algorithms are direct (or exact) methods with a finite sequence of instructions. This
means that an algorithm requires a finite amount of resources (time and memory), is unambiguous and
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terminates in finite number of well-defined steps. The algorithm guarantees completeness, optimality,
and precision of the returned solutions (which are exact in the absence of rounding errors). As the
name implies, enumeration algorithms discover all the optimal solutions, compare them and return
the global optimum.

These properties make them easier and faster to apply; however, the most important problems
have no known algorithms for solving them, or existing methods become intractable for large input
sizes (e.g., are exponential time).

Iterative Methods are mathematical processes that start with an initial value, and produce a sequence
of improving approximate values. These methods cannot guarantee convergence. However, if an itera-
tive method has a termination condition it is considered an algorithm and can guarantee convergence
at the cost of precision. Iterative methods are used to solve problems with many variables where
direct methods are very expensive or intractable. Even with a termination condition, not all iterative
methods can guarantee converge to an optimal solution, but provide a guarantee on the quality of the
approximation (see Nocedal and Wright [75]). All iterative methods discussed in this thesis have a
termination condition.

Heuristics (from the Greek εὑρίσκω which means I find or discover) are techniques to generate fast
approximate solutions to a problem (not necessarily optimal), by guessing based on available infor-
mation. Heuristics are also algorithms; however, they cannot guarantee convergence, completeness
nor optimality. These methods are used when there is (1) no known efficient algorithm for solving a
problem, and (2) the brute-force approach is intractable.

Heuristics sacrifice optimality, precision, and completeness for higher speed and are often used to
solve NP-hard optimisation problems. The vast majority of Artificial Intelligence problems are solved
via heuristics (see Russell [91]). Examples of heuristics include the widely used neural networks,
which find applications in pattern recognition (e.g., voice or image) or agent behaviour (such as in
video games).

Deterministic Vs Non-Deterministic Methods—the previously mentioned methods can be also
classified based on the existence or absence of randomness in the sequence of steps the method
follows.

• Deterministic methods provide the same output given the same input, computed from the
same sequence of steps. These methods can guarantee optimality under certain conditions.

• Non-Deterministic algorithms are methods where given the input we cannot determine the
sequence of steps nor the output. This means that different outputs can be produced for the
same input.

In algorithms the source of non-determinism could be due to the following.
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Figure 2.4: Deterministic (left) and non-deterministic decision algorithm. A deterministic algorithm
will always follow the same steps and terminate in finite time. A non-deterministic algorithm does not
necessarily follow the same steps nor produce the same output, and might never terminate.

– A random external signal other than the input, that follows an unknown probability
distribution.

– Time-sensitive operations, for example in multi-threading machines that choose the next
step to execute depending on which thread will finish first. Such concurrent processes are
dependent on race conditions, which in general cannot be predicted.

Stochastic Methods are methods that use random variables with a known probability distribution
to determine each step of the algorithm. By using probabilities a faster exploration of the search-
space is achieved. These methods can handle practical and large scale problems. Stochastic and
non-deterministic methods do not mathematically guarantee optimality, but trade this disadvantage
with speed, and are able to provide reasonable solutions.

Metaheuristic is an algorithmic procedure that generates heuristics for solving problems. They
are general-purpose algorithms that can be applied to a variety of different optimisation problems
without the need of large modifications. Many metaheuristics use stochastic optimisation techniques.
Metaheuristics are used when there is incomplete information of the examined problem. An example
of algorithm that is using a metaheuristic is the family of Evolutionary Algorithms (EA) [18], which
will be extensively discussed in the next part of this thesis. Evolutionary algorithms are specifically
interesting because they are based on the real phenomenon of evolution.

2.2.3 Techniques

Many optimisation methods are tailored for solving specific problems. In the recent years though, a
lot of work has been made towards developing all-purpose methods that can be applied to a variety of
problems. Because there are many different techniques for solving optimisation problems, only the
most popular and relevant to robot design are shortly presented and described.



40 Background: Mathematical Optimisation

Exploration Vs Exploitation

Before presenting the various techniques two basic concepts must be presented first. The concepts of
exploration and exploitation.

Exploitation is a low-risk strategy that seeks to maximise the use of available information. Strategies
that seek to purely exploit information are called greedy strategies.
Exploration is an approach where new information is sought at the cost of not fully exploiting the
current information. These strategies seek to discover new information even when moving in a
direction where the objective values is decreasing.

Obviously these two terms are conflicting. This creates a trade-off that global algorithms must
optimise. If a new solution has the highest overall value then the algorithm must search the area
around that solution to find the locally best one (exploitation). However, if that solution is not close to
the global optimum, the algorithm might waste all of its resources to find a sub-optimal solution. For
that reason, new solutions must be constantly explored (exploration), because as mentioned earlier the
algorithm can never know for certain (unless it explores the entire search-space) if a given point is a
global optimum or not.

Exploration is mostly governed by the philosophy of taking blind or random steps in hope of
finding a better solution. The trade-off between exploration and exploitation in optimisation algorithms
can be regulated via fine-tuning of their hyper-parameters or by selecting different implementations
of a method. These parameters and implementations may vary between methods, and in many cases
there are specialised implementations that are specifically tailored for promoting diversity between
examined points. Furthermore, the algorithm’s hyper-parameters can tilt the scale towards exploration
or exploitation. For example, in the case of Genetic Algorithms (Section 2.2.3), a high probability of
genetic mutation leads to stronger exploration.

Following the previous explanations, optimisation algorithms can be classified into two general
categories:

1. global optimisation algorithms, and

2. local optimisation algorithms.

Global Optimisation

Global optimisation algorithms are used for solving problems that are expected or are proven to have
multiple optima. Because such problems are usually intractable, heuristics are used for finding fast
solutions. To increase the chances of finding the best solution, global optimisation techniques evaluate
multiple points that are scattered over the search-space. To generate a population of initial solutions,
methods that are referred to as Design of Experiments (DOE) are used, in an attempt to promote
exploration. These techniques will be described extensively in Part II. Because these algorithms can
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escape from local minima, they can be applied in most problems. Examples of global optimisation
algorithms are the following.

• Evolutionary Algorithms (EA) are a family of metaheuristic global optimisation algorithms
that are inspired by evolution and the process of natural selection. Starting with an initial design
population, the fitness of each design is evaluated based on a performance objective criterion,
and the best designs are selected to reproduce and produce new generations. Each design is
encoded as a vector of values, and breeding happens via the basic genetic operators, which are
the following.

– Selection—the fittest designs are selected and propagate unaltered to the next generation.

– Mutation—based on a probability distribution some values on a design’s vector of values
are randomly changed.

– Crossover—two of the fittest designs exchange genetic information, which in practice
means a new design is generated by combining the genes of the parents.

Based on the aforementioned procedure, several variations of EA were developed for solving
generalised optimisation problems. Some of the most popular techniques are Genetic Algorithms
and Evolution Strategy. Due to the fact that these algorithms use metaheuristics they cannot
guarantee convergence, completeness nor optimality; however, because they can produce fast
solutions and can be easily applied, they have been widely used in robot optimisation. An
overview of evolutionary-aided robot design can be found in Prabhu et al. [82] and more details
about the theory behind EA can be found in Coello [18].

• Particle Swarm Optimisation (PSO) is a metaheuristic technique based on animal flocking
behaviour. Starting with an initial population of designs scattered in the search-space, particles
(the designs) start moving towards a locally best known design. By doing this, it is expected
that the particles converge to the best values. This technique is similar to EA, in the sense that
it uses the concepts of population and fitness measurement [18]. Just like EA, PSO takes few or
no assumptions about the examined problem, making it easy to apply; however, just like any
other metaheuristic it does not provide any guarantees.

• Simulated Annealing is a stochastic metaheuristic optimisation technique that mimics the
process of annealing in metallurgy [18]. Based on a temperature value, the algorithm seeks new
values, even if they are worse than the current best solution, while the temperature gradually
falls. As the temperature lowers, the probability of accepting worst solutions also drops. This
allows the algorithm to jump from local minima to new areas in search of a global minimum.

• Branch and Bound (BB) method is a divide and conquer method for solving discrete optimisa-
tion problems. It splits the search space into smaller spaces (branch) and prunes tree branches
based on calculated bounds on the objective function value (Papadimitriou and Steiglitz [77]).
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Without the bound part this method would be an exhaustive search. This method does not
guarantee optimality nor convergence and has an exponential worst case complexity, even
though it can produce acceptable results in practice.

• Artificial Intelligence uses statistical models for approximating solutions of general problems.
The basic concept of AI is to train statistical models to optimise a cost function. This means
that most AI methods are stochastic. Examples of AI optimisation methods are Bayesian
Optimisation (BO), variants of Artificial Deep Neural Networks (NN) and Reinforcement
Learning (RL). BO uses a distribution (prior) to model the objective function and the distribution
is updated with each new sample (posterior). NN and RL are commonly used to model
control strategies by making control decisions to optimise an objective (e.g., avoid collisions or
generate a walking pattern). More details on AI and its applications can be found in Russel and
Norvig [91].

Other noteworthy global optimisation algorithms are the Tabu Search [18] and the Ant Colony
(Doringo et al. [23]).

Local Optimisation

Generally referred to as gradient-based or classical approaches, local optimisation techniques search
for the best possible value close to a starting point, meaning that they are fitting methods for exploita-
tion. These methods use gradient information and usually come with guarantees about optimality
and fast convergence rates, and provide solutions with high precision. However, they do not provide
completeness (because they return only one solution) and can easily get trapped in local optima. This
happens because the result is dependent on the initial value. These methods are most commonly used
for linear or non-linear convex problems, but can also be applied to refine approximate solutions
returned by global optimisation techniques.

Local methods depend on derivative values for calculating an iterative process of steps. If
derivative information is not available, it can be approximated using Forward or Central Differences,
or any other methods for approximating derivatives (see Nocedal and Wright [75]). These methods
have multiple variations so the most general cases are only briefly described.

• Gradient descent is an iterative method for non-linear and differentiable problems. The
intuition is simple, move in the direction where the objective decreases with the fastest rate
until a critical point is reached, that is hopefully a local minimum. The update rule is given by
Equation 2.7, and it is commonly used with a step value γ ∈ [0, 1].

xi+1 = xi − γ∇ f . (2.7)

This method is often used in the training process of Artificial Neural Networks (Russell [91]).
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• Newton’s method is an iterative method for unconstrained non-linear and twice continuously
differentiable problems. It requires information of the first and second derivatives of the
objective function (Jacobian and Hessian for multivariate functions), and every new step is
calculated by Equation 2.8, which is derived from the Taylor series expansion. For this reason
the second derivative needs to iteratively be calculated (and its inverse) to iteratively solve a
linear system of equations. The difference with gradient descent methods is that Newton’s
methods use curvature information to reach at the optimum faster, but require the second
derivative to exist and be continuous. For a scalar value x, the step can be calculated as follows:

xi+1 = xi − γ
∇ f
∇2 f

. (2.8)

If information of the derivative is not known, or difficult to estimate, Quasi-Newton methods
can be used instead. Their advantage over exact Newton’s method is that they do not need to
calculate the inverse of the Hessian, which is very expensive, but they approximate it. Quasi-
newton methods are computationally cheaper and faster than newton’s methods, but they have
a slower convergence rate and are less precise (see Nocedal and Wright [75]) because they
do not have complete information of the second derivatives. Newton’s method is rarely used
standalone since most problems of interest are constrained. One of the most popular algorithms
that use the quasi-newton method is the Broyden–Fletcher–Goldfarb–Shanno (BFGS).

• Simplex algorithm is a method for linear optimisation problems. A system of linear inequalities
creates a polytope, and the algorithm starts from a vertex and moves to a next vertex through the
edges until the optimal solution is found. Simplex has an exponential worst-case complexity;
however, in practise it has a polynomial-time average complexity making it a powerful tool for
linear optimisation problems (Papadimitriou and Steiglitz [77]). Simplex algorithm has many
different variations.

• Sequential Quadratic Programming (SQP) are iterative methods for constrained and twice
continuously differentiable problems. It is suitable for problems with significant non linearities.
SQP methods turn large non-linear problems into smaller and easier quadratic problems, and
use newton’s method to iteratively solve the Lagrangian function. For this reason it can be very
efficient in large scale problems (Boyd and Vandenberghe [12]). SQP methods find uses in both
robot design and optimal control problems. Because of their efficiency they can be used as
parametric controllers for real-time non-linear control problems.

• Interior Point (IP) methods are iterative methods for solving linear and non-linear convex
and constrained optimisation problems by solving a sequence of approximate optimisation
problems. The approximate problems are equality problems and are easier to solve than the
original problem [12]. As the value of the approximate problems goes to the minimum the
value of the objective function should go to its minimum. In contrast to Simplex, instead of
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traversing edges IP algorithms traverse the interior of the feasible region until a solution is
found. They are a popular derivative of the newton’s method and they iteratively approach the
optimal solution from inside of the feasible set. The most common methods are the Barrier and
the Primal Dual methods. They have been proven to be polynomial-time solvable for linear
problems. IP methods are very popular and Matlab’s Optimisation Toolbox [67] contains an
implementation.

Directly obtaining derivative information is quite difficult for most problems, and hence derivative
approximations via Finite Differences are commonly used. The aforementioned methods should
be applied when the examined problem meets regularity conditions (e.g., objective function is
differentiable) otherwise convergence is not guaranteed.

2.3 Conclusion and Summary

In this chapter an overview of mathematical optimisation and its basic concepts was presented. In the
first section a formal definition of a general optimisation problem and its most important concepts
are explained. Thereupon, a short introduction to computational complexity theory is presented,
which is essential for understanding why some problem types are more difficult to solve than others.
Furthermore, a classification on the various types of optimisation problems is proposed together with
some important examples of each category’s problems.

Next, a set of performance criteria and the different types of methods for solving optimisation
problems are presented. Finally, the chapter ends by briefly describing some of the most commonly
used optimisation methods for robot design and a short discussion on when they can be used.

The purpose of this chapter is to lay out the foundation for evaluating the pitfalls of robot design
optimisation, as well as to present the criteria for selecting appropriate methods. In the next chapter,
applications of numerical optimisation for the design of robots is presented together with a critical
assessment of the field.



Chapter 3

Related Works: Robot Design
Optimisation

Robot design optimisation is the field that deals with finding the best design to perform a set of tasks,
based on a set of requirements. The objective of this chapter is to situate the presented research
in the literature. More specifically, to present what has been written on the topic of robot design
optimisation, the main approaches, and the gaps and weaknesses that this study helps to fill.

The process of designing a robot requires experience and an understanding of the non-intuitive
relationships between the desired behaviours and the mechanical parameters of the robot. To facilitate
and understand this process, researchers have turned to computational optimisation. Robot design
optimisation is a relatively young field. Some of the first notable results in the field were presented in
the work of Sims [101] in 1994 where an Evolutionary Algorithm was used for co-optimisation of
motion and physical structure to create virtual creatures that could jump, walk or swim.

Robot design optimisation deals with problems that exist in the real world, so optimisation studies
may involve a large number of parameters and constraints, as well as multiple objectives. Furthermore,
many components of a robot are non-linear, and independent variables can be continuous or discrete.
As a result, the majority of such problems are computationally intractable (NP-hard), which means that
we cannot expect to solve them efficiently or even to find exact solutions with optimality guarantees.
For this reason scientists have devised different ways for designing robots, including trial and error,
with optimisation tools or even by mimicking the designs and behaviours of animals.

This chapter starts by presenting the bio-inspired design approach, where concepts from nature
are applied to the design of robots. Next, studies that optimise robot designs for achieving a set
of predetermined motions or behaviours are presented. Following this, studies where the design is
predetermined and an optimal motion or controller is sought are presented. Finally co-optimisation
studies of design and the way to achieve the desired motions are discussed. For completeness, design
studies of various types of robots are presented with a main focus on legged robots, which is the case
study of this thesis.
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Figure 3.1: From left to right: (1) Centauro robot, (2) MIT’s mini-cheetah, (3) Hyq2Max.

3.1 Bio-Inspired Robot Designs

Before presenting numerical optimisation approaches, it is worth mentioning the category of nature-
inspired or biologically-inspired robots. Instead of relying on computational models or pure intuition,
scientist attempt to copy the physical characteristics of animals such as their skeletal or muscle
mechanisms. Compared to the few years of human advancement in technology (air planes were
invented only a century ago), nature has spent billions of years of evolution to eliminate weaknesses
and produce stronger species. The amazing abilities that animals display are the result of nature’s
own optimisation via the process of evolution.

Many animals have very unique designs and have developed very efficient strategies for moving
based on their inherent evolutionary traits. An interesting study on how animals move is presented
in the work of Dickinson et al. [21]. Scientists have based robot designs on a variety of animals in
an attempt to reproduce some of the amazing feats that these animals can achieve. Scarfogliero et al.
[95] designed a miniature robot inspired from frogs, that was capable of achieving travelling hops
of 1.5 m/s. Murphy et al. [73] designed a quadruped robot inspired by dogs, with the aim to explore
legged-locomotion in different terrains. The robot was designed for learning and experimentation,
and performance requirements were not clearly stated in their work.

Quadruped robots are popular due to the stability provided by their four legs, which can help them
balance without effort (Raibert [83]). Similarly, Semini et al. [98] designed a quadruped robot named
HyQ2Max (see Figure 3.1) based on bio-mechanical studies on humans and animals. Even though
the authors perform an optimisation study based on torque requirements for minimising actuator
sizes, and four-bar linkage parameters, they state that the design does not have a specific application.
Resembling also a dog, Hutter et al. [52] designed a general purpose robot named Anymal with a
series elastic actuator inspired from biology, which was able to demonstrate a variety of behaviours
such as trotting, walking and stair climbing.
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Cheetahs are also a source of inspiration. These quadruped animals are the fastest land animals on
earth and can reach speeds of up to 130 km/h. Sprowitz et al. [105] designed a small quadruped robot
called Cheetah-cub for demonstrating trotting gaits; however, no specific performance requirements
were defined in their work. Inspired also by cheetahs, a series of robots were build by the Bio-
mimetic Robotics Lab of MIT. Bledt et al. [9] presented the MIT Cheetah 3 intended for general
use, demonstrated by its ability to blindly climb stairs. Following the larger prototype of Bledt et
al. [9], Katz et al. [56] built mini-cheetah, a smaller and lighter version of the Cheetah 3 capable of
performing a back-flip.

Inspired from the centaur creature from the Greek mythology Kashiri et al. [55] designed the
Centauro robot (see Figure 3.1), that has four legs and the upper body of a humanoid, in an attempt
to utilise the stability provided by four legs and the manipulation capabilities of humanoids for
disaster applications. Graihen et al. [40] designed a kangaroo with the aim to achieve stable hopping
cycles; Chablat, Venkateswaran and Boyer [14] created a caterpillar-based piping inspection robot to
efficiently navigate inside pipes; and Kuehn et al. [59] designed a chimpanzee-inspired robot. Finally,
Li et al. [62] and Yim et al. [111] demonstrate hopping behaviours in insect-like robots.

Commercial legged robots outside of industrial environments are already starting to appear by the
time this thesis is written. Even though their design details are not revealed, they are worth mentioning
as they are an indication that robotics has reached a level of maturity where reliable products for
general-purpose use are already produced and sold. These robots provide an insight into the future
where robots will be a part of our everyday lives, and they already find applications in military,
exploration, disaster scenarios and even advertisements.

Introduced in 1999, the AIBO robot [103] is a dog-inspired robot created by SONY for enter-
tainment purposes, which was also used for educational and academic purposes. One of the most
prominent companies in robot manufacturing is Boston Dynamics with the Spot Robot [25], a com-
mercially available quadruped. Unitree Robotics [86] and Ghostrobotics [85] are also ready to enter
the market with a series of agile quadruped robots. Agility Robotics [84] already produces and sells
bipedal robots intended for in-home use.

3.2 Design-only Optimisation

Design-only optimisation is concerned with studies where only the design of a robot is optimised
to achieve a set of tasks in a predetermined way. In other words, the optimal design for achieving a
specific motion or behaviour is sough via a numerical optimisation experiment. This type of optimisa-
tion is usually performed when the goal is to design general-purpose robots or when behaviours are
difficult to model and simulate. The following categories can be defined for design optimisation.

1. Topology optimisation—are techniques that are not bounded by predetermined structures.
Can be used for (1) maximising the rigidity or reducing the mass of a structure, or (2) for
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applications where different shapes can produce substantially better results (e.g., for the design
of soft robots such as Hiller et al. [50] and Cheney et al. [17]). The former case usually requires
stress-strain analysis to strengthen areas of high strain and shave off mass from areas of low
strain, which is usually performed with Finite Element Analysis. A drawback of this analysis is
that it is very computationally demanding, because it applies mesh generation techniques to
create finite elements for solving a set of partial differential equations.

2. Shape or morphology optimisation—the shape has a predetermined structure to be optimised
and is described by a parametric function. In addition to the properties of the shape (e.g., length,
curvature etc. [92, 46]) the behaviour of a component or the entire robot can also be optimised
by varying parameters that represent selected properties (e.g., stiffness of a spring).

3. Mixed-integer optimisation—in this case specific components can be replaced. For example,
in the case where the performance of different actuator systems needs to be tested. Various
actuators have different transfer functions, and hence changing this component changes the
behaviour of the entire system.

In the work of Ha et. al. [44], an optimisation approach for generating robot designs for tracking
a set of input trajectories is presented. The approach uses discrete components such as actuators and
mounting brackets to create optimal robots for tracking reference trajectories on manipulators and
legged robots. The work is validated by demonstrating its effectiveness in fabricated robots.

Chablat, Venkateswaran and Boyer [14] minimised the size and maximised the contact forces for
a piping inspection robot to efficiently navigate inside pipes by using a Genetic Algorithms. The robot
is optimised to mimic the motion of a caterpillar. Ceccarelli and Lanni [13] optimised the geometrical
parameters of a simulated 3R manipulator with multiple objective functions to increase its workspace
capabilities using a SQP optimisation method, which is a local optimiser.

Semini et al. [98] optimised hydraulic cylinder sizes and the kinematic parameters of a 4-bar
linkage of HyQ2Max to fit a desired output torque profile. The trajectories come from a set of
simulated motions on a previous version of their robot. Even though this approach could provide
sufficient information for creating a robust new design, there is no evidence or study showing that
these motions are optimal for different designs; as it is shown in Section 6.6.7, designs with small
variation in their parameters may present a significantly different performance. Roozing, Zeyu and
Tsagarakis [87] optimise spring stiffness and positions of a monopedal robot for standing on a flat
terrain.

In the work of Yim et al. [111] high-performance hopping and balancing ability is demonstrated
with a miniature hopping robot named Salto-1P. The performance of their miniature hopping robot
is measured via experimentation in a series of tests; however, this method cannot always guarantee
that the desired performance would be reached. Plecnik et al. [79] optimised the parameters of the
Salto’s 8-bar linkage for producing jumps with almost zero angular momentum. Even though a set
of constraints and optimisation objectives were defined to produce low angular momentum hopping
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behaviours, these behaviours were not simulated. The optimisation was performed using the Interior
Point Algorithm, a local optimiser.

All of the aforementioned robots demonstrate impressive skills, and were built with a clear
general sense of purpose such as to perform accurate hops or have high reachability in the case of the
manipulator; however, their goal was not explicitly defined (e.g., define exactly the desired hopping
height), and their physical capabilities were mostly determined experimentally without any proof that
the final design is the best one for the desired objective. Different designs have different abilities, and
behaviours must be adapted to properly exploit them. This issue is discussed in Section 6.6.

3.3 Motion or Behaviour Only Optimisation

In this section optimisation studies are presented where optimal behaviours of a given design are
sought. Such studies may be either on real robots or for the purpose of producing realistic animations.
This type of study usually precedes the design of the robot, and can be divided into three main
categories.

1. Motion or trajectory optimisation—in this case a signal is modelled and is directly optimised.
The advantage of this method is that it gives freedom to the optimiser (because it is not restrained
by the capabilities of a predefined controller), and hence it has more chances of finding better
solutions. The disadvantage is that once an optimal signal is discovered, a controller must be
built based on it, and this might turn out to be a tedious task. This is a case of open-loop control,
where the system does not use feedback to determine if the commanded signal has achieved the
desired goal. The control system is being ignored and only the plant is being investigated.

2. Behaviour optimisation—this case includes the motion optimisation (e.g., optimises a given
signal) as well as certain key variables (e.g., initial position of joint and velocities). In other
words, both the initial conditions and the action that the system takes are optimised, which
essentially forms a full behaviour. This category gives the highest degree of freedom to the
optimiser, but results in more complicated problems due to the higher number of independent
parameters. Naturally, this is also an open-loop control case.

3. Controller optimisation—is performed when the system already has a controller and the
parameters or policy of the controller are optimised to achieve the best behaviour. The advantage
of this approach is that less effort is required because no new controller needs to be designed;
however, the system can be constrained by the nature of the controller. A controller can be
parametric (e.g., PID controller), an optimisation algorithm (e.g., SQP controller) or a heuristic
(typically Artificial Intelligence such as Deep-Neural Networks or Reinforcement Learning
[91]). In this case closed-loop behaviours are investigated and the control system is being taken
into consideration.
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Given a specific design, various behaviours can be achieved based on its characteristics (e.g., it
has legs, wings etc.), and its physical traits. Sometimes, these behaviours might include unfortunate
scenarios such as loosing a limb. In an interesting study Bongard et al. [10] investigate behaviours
where a quadruped robot adapts its locomotion strategy when amputated, by using optimisation
techniques. Such behaviours can increase the robustness of robots and allow us to get a deeper
understanding in the cognition of animals, so we can integrate it into machines.

Sprowitz et al. [105] explore the physical potential of the cheetah-cub for trotting gaits using
Particle Swarm Optimisation (a stochastic global optimisation technique) for optimising control
parameters. Bledt et al. [9] explore a variety of behaviours including stair climbing by optimising
contact forces or robot states by assuming linear dynamics with Quadratic Programming (QP). This
optimisation approach is dependent on initial values and is prone to getting trapped in local minima.
On the same robot Nguyen et al. [74] explore jumping behaviours by optimising trajectories (joint
states and torques) also with QP, and searching only for a feasible solution. Even though they
demonstrate hopping behaviour on and off a 0.76 m table, they present only one way to achieve it, and
there is no certificate of optimality.

Katz et al. [56] use an implementation of the Interior Point algorithm for generating a behaviour to
achieve a back-flip of 0.3 m height on MIT’s mini-cheetah. In their work, they treated the optimisation
problem as a feasibility problem and searched for any possible way to achieve this feat. Searching only
for feasible solutions means that the presented behaviours are potentially non optimal. On the same
line, Graihen et al. [40] use Matlab’s [68] non-linear optimisation solver for generating feed-forward
stance phase trajectories of the joints for landing/lift-off in their kangaroo-like robot.

The computer graphics community has also demonstrated a plethora of studies in design optimisa-
tion. These studies are mostly restricted to behaviour studies such as in Fang and Pollard [28], where
the authors optimise the behaviour of humanoid animations to perform a variety of complex dynamic
motions such as back-flips. Macchieto et al. [66] optimise joint accelerations using QP for balancing
humanoid and non-humanoid 3 D animations.

The main disadvantage of behaviour-only optimisation is that the physical capabilities of the
robot or the simulation have been already defined and such studies can only determine the optimal
behaviour of a specific design. A different design might display a higher performance for a given task,
but it is impossible to determine that without examining how various designs perform on a given task.
Furthermore, most of the previously mentioned studies were feasibility studies or were performed
using local optimisers. As a result, only a single solution or strategy is found, and other local minima
(and probably the global optimum too) might be ignored. Certainly physical demonstration in a real
robot provides a proof of concept and is useful for future studies. However, to design robots that are
reliable and perform to their maximum potential, studies should include global exploration which can
discover multiple solutions and allow the design to co-evolve with its behaviours.
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3.4 Design and Behaviour Co-optimisation

This thesis argues that explicitly specifying the performance objectives of a robot and co-optimising
both the behaviour and the design can lead to more robust, energy efficient and capable robots.
Understanding the purpose of the designed robot can provide additional information that can aid
the design process and result in impressive behaviours. For example, even though the performance
objectives were not explicitly stated (e.g., achieve a 1 m hop), mini-cheetah [56] and Salto-1P [111]
were designed to be robust and display highly dynamic jumping behaviours, which they do. This
indicates the importance of a more specific design purpose. Taking this a step further, one can
explicitly define one or multiple objectives for the designed robot. In this way, the designer can
investigate which are the limitations of his design, based on the simulations, and improve it.

A robot’s performance can be limited by the potential of the available technology, and without
exploring it in a systematic way we can not achieve what is truly possible. Robots should be designed
to meet a clear set of performance objectives, and not be experimentally evaluated afterwards, which
might lead to sub-optimal behaviours. This section presents and evaluates optimisation studies in
which performance objectives are explicitly defined and are concurrently optimised with the designs.

Some of the first notable works in design and behaviour co-optimisation are presented in the work
of Leger et al. [61] (1999). In this study, the author implemented a multi-objective platform for design
and controller co-optimisation. The aim of this work was to introduce a generalised framework to
automate the design process of various types of robots for defined task objectives. In another early
work of Lipson and Pollack [64] (2000), robotic structures of various shapes are co-optimised together
with their controller for the task of locomotion.

Gradient-based approaches have been widely applied in design optimisation due to their fast
converging properties, but require carefully selected starting points and are constrained to a local
exploration around them (they cannot escape local optima). Spielberg et al. [104] co-optimised motion
and morphology of legged and flying robots for one task using a gradient-based approach. In this
study the authors built and tested a real hexapod in which optimisation of link lengths was performed
for the task of running.

Evolutionary algorithms have also been extensively applied for the problem of design and be-
haviour co-optimisation due to their global convergence properties. Surveys and reviews, where the
key challenges on the field are presented and discussed can be found in the works of Winfield and
Timmis [110], Bongard [11], Gupta and Singla [43] and Prabhu et al. [82].

3.4.1 Soft Robots

Design and behaviour co-optimisation has also been the topic of interest in soft robots. Soft robots are
challenging to optimise due to their compliant bodies, which are difficult to model. In model-based
approaches models are built and optimised in simulations; while model-free approaches use real
robots for evaluation. The rapid evolution of additive manufacturing has facilitated the automation of
the fabrication process of soft robots, which results in creation of soft robots faster and with minimal
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human intervention. A review on model-free and model-based co-evolution of soft robots is presented
in Howison et al. [51], together with a new emerging trend that combines the two approaches.

In the work of Vujovic et al. [108] a model-free approach for co-optimisation of soft robots for
locomotion is presented. In this work a manipulator is used to automatically assemble and evaluate
new robots with a webcam. Using the same philosophy Rosendo et al. [88] automate the fabrication
process for co-optimisation of soft robots. Model-free approaches and validation of multiple design
candidates in the real world is a very interesting approach; however, it is not easy to implement for
larger robots with complicated mechatronics.

A study that focuses more on the theoretical insights behind EA can be found in [58], where a
simulated soft robot’s control and morphology are optimised for locomotion. In this study, soft robots
are represented by voxels with a varying size. Another interesting study on soft robots is presented in
Cheney et al. [16] where virtual soft robots driven by current are co-optimised for locomotion in flat
ground using EA. In a recent study by Cheney et al. [17], a new approach in EA is presented and is
applied to co-optimisation of topology and control of virtual creatures with the aim of giving a deeper
insight in embodied cognition.

Baykal and Alterovitz [6] use the Adaptive Simulated Annealing algorithm (ASA), a global
optimisation algorithm for optimising kinematics of a simulated cylindrical surgical robot to navigate
in cluttered environments. Motion is generated by a sampling based algorithm named Rapidly-
exploring Random Tree (RRT), to generate approximations of a design’s reachability by randomly
searching for collision-free paths.

3.4.2 Manipulators

Hazard, Pollard and Coros [48] co-optimise the kinematics and trajectories of manipulators for
different manipulation tasks using the Broyden Fletcher Goldfarb Shanno algorithm. The feasibility
of their approach has been proved on a 3 D-printed hand that grasps a sphere. Similarly, Chen, He
and Ciocarlie [15] co-optimise the design and the control parameters of an under-actuated hand for
grasping objects using Reinforcement Learning techniques. Their approach is validated with a real
robot that successfully grasps different objects. Ha et al. [46] optimise link lengths and trajectories for
moving and picking objects with manipulators, a work which is more extensively discussed in the
following subsections.

3.4.3 Other types of Robots

Mechanism and behaviour co-optimisation has also been applied in micro-robots. Liao et al. [63]
use a variation of Bayesian Optimisation to optimise design and controller behaviour of micro-robots
for locomotion. These robots are in the millimetre scale, and weight only a few grams. In the work
of Luck et al. [65] the controller and morphology for traversing terrains with sand is co-optimised.
Locomotion is inspired by sea-turtles and the approach is validated with experimental results. Corucci
et al. [19] optimise the design and the feed-forward behaviour of an underwater robot, and Moore et
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al. [71] optimise the controller and the design of an amphibious robot with EA, and validate their
approach on a real prototype.

3.4.4 Legged Robots

The design of a humanoid robot together with walking trajectories and a controller’s feedback gains
are co-optimised in the work of Cruz et al. [20] with the use of genetic algorithms. The results are
validated in a real humanoid robot. In the work of Zhao et. al. [112] robot assemblies are generated
and their controllers are co-optimised for traversing various terrains. A heuristic algorithm is used
to generate virtual multi-legged robot designs from a database containing discrete predefined links,
joints and connectors, and Model Predictive Control is used for generating optimal trajectories. Their
simulations include a maximum joint torque-limit, which corresponds to the limit of an actuator they
already have; however, they do not use a complete model of an actuator, and hence its dynamics are
ignored.

Pathak et al. [78] co-evolve control and morphology of virtual robots that consist of limbs and
motors for standing up. The robots learn to self-assemble to form more complicated robots and
optimisation is performed with Neural Networks. Geilinger et al. [37] co-optimise design and motion
for legged robots that also have wheels on their feet. For optimisation they use Newton’s method with
a backtracking line search method (a local optimisation method), and they validate their results on
real robots. Ha et al. [45] co-optimised the design and motion of a virtual single-legged hopping robot
to reach a 1 metre vertical hop. With the objective of maximising gait stability and speed, Nygaard et
al. [76] co-optimised morphology and control in a real small quadruped.

In their work, Saar et al. [92] used a Bayesian optimisation algorithm for co-optimisation of
morphology and controller. Their study was applied to a real hopping robot for optimising running
speed and a few design parameters including curvature of the foot. Schaff et al. [96] used a combination
of a Gaussian-Mixture model (a Bayesian optimisation technique [91]) and deep reinforcement
learning for co-optimising control and morphology. In their work, simulated legged robots, which
included a hopper, were optimised with the aim to maximise their horizontal locomotion speed.

In a recent study by Ha et al. [46], the authors propose a generalised framework applicable to
different kinds of legged robots and manipulators that receives as input a parametrized robot with a
motion trajectory, and concurrently optimises design and motion. Their motive was to aid the design
process by modelling the relationship between design and motion via sensitivity analysis. Sensitivity
analysis is very important for understanding the examined system, and it is an integral part of the
proposed design approach in this thesis.

The framework of Ha et al. [46] was applied for the optimisation of different robots and different
tasks. The design parameters optimised are link lengths, position of the actuators and geometrical
characteristics of four-bar linkages. In the motion trajectory part, the optimised parameters are actuator
and contact forces as well as joint positions. In their work the motions are given, whereas in the
work presented in this thesis the objectives of the behaviours are provided together with initial values,
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allowing the optimiser to find the optimal way to achieve them. Finally, their results were applied on
a real miniature quadruped robot for rolling and walking gaits.

3.5 Comparison With Other Works

This section focuses on the gaps in the works presented for the field of robot design optimisation, and
how the presented research helps to fill them and add to the current knowledge.

Advantages of Design and Behaviour Co-optimisation—in the presented framework both the
mechanism and the behaviour of the robot are co-optimised, which allows the design to adapt to new
behaviours and vice versa.

Several studies optimise a behaviour given a specific design, such as in Bledt et al. [9] and
Verstraten et al. [107]; however, this approach ignores the inextricable relationship between a design
and its behaviours, which might potentially lead to sub-optimal results. In a co-optimisation study,
the performance of a behaviour is not constrained to the design’s maximum physical ability nor the
design to a potentially sub-optimal behaviour.

Realism of Models—despite a few cases such as the work of Spielberg et al. [104] and Digumarti
et al. [22] (which include realistic actuation constraints such as torque limits), most studies ignore
important aspects of real robots which are taken into account in this thesis. Namely a few of them
are: the dynamics of actuators and transmissions, physical limitations of the mechanism such as
torque, current and speed limits, as well as realistic models of springs and their behaviours (such as
hysteresis). As it is shown in the examined case study (see Section 6.6), all of these aspects play an
essential role in determining a real robot’s physical capabilities, and their effects and dependencies
have not yet been properly explored.

Optimisation for Multiple Performance Objectives—most of the previously mentioned studies
optimise for a small set or even only one desired behaviour. However, the framework presented in this
thesis can be used for a large repertoire of performance objectives.

Ha et al. [45] co-optimise the design and motion of a monopod hopping robot for a one metre
vertical hop; Nygaard et al. [76] co-optimise morphology and control in a real small quadruped. One
behaviour is co-optimised in Digumarti et al. [22], and in Ha et al. [46] co-optimisation is performed
for a variety of robots for one or two behaviours. As it is shown in the results of this thesis, achieving
multiple different behaviours is not straight forward, due to the underlying trade-offs between them.
For that reason, and in order to design robots that are useful and capable of multi-tasking, different
performance objectives must be taken into consideration during the design process.
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3.6 Conclusion and Summary

This chapter presented related works to this thesis topic, which is robot design and behaviour co-
optimisation. The bibliography was divided into four parts, which are: (1) bio-inspired robot designs,
in which robot designs are based on animals, (2) design-only optimisation, where robot designs
are optimised for achieving specific tasks in a predetermined way, (3) behaviour-only optimisation
of a given design where the maximum physical potential of a robot is sought, and (4) design and
behaviour co-optimisation where the design and the behaviour of robots are concurrently optimised.
Finally, a short description of the contributions of this thesis and comparisons with previous works
was discussed.

In the next chapter the main contribution of this thesis is presented, which is a framework for
design and behaviour co-optimisation of robots, as well as a proposed optimisation methodology for
performing a design study.





Chapter 4

Optimisation Framework and
Methodology

Abstract

This chapter introduces the main contribution of this thesis, which is an approach or philosophy for
the design and behaviour co-optimisation of high-performance mobile robots. The approach consists
of an optimisation framework and an optimisation methodology. The framework is a conceptual
structure that serves as the canvas for the design study. The main intuition behind the framework is
that a mechanism and its behaviours have an inextricable relationship, which is taken into account
during the design stage, and together with a set of important concepts provides a foundation for the
design optimisation experiments.

The optimisation methodology consists of a series of steps for the purpose of performing the
design optimisation experiments. The aim is to use different tools and approaches to analyse results
and for building robust, versatile, high-performance robots that can utilise available technology to its
full potential safely and with fewer design iterations.

4.1 Framework

The optimisation framework is a two-layer scheme, and its overall structure is presented in Figure 4.1.
In Layer 1, also called the Mechanism Layer, new designs are generated. The designs are found by an
optimisation algorithm that seeks the best designs to achieve a set of performance objectives. Each
new mechanism is then passed to the Performance Objective Tester in Layer 2 (can be also called the
Behaviour Layer), where it passes through a series of performance tests. Each performance test can
be either: (1) an independent optimisation experiment, or (2) a value that is a result of a calculation.
The latter can be an intrinsic property of the mechanism, such as a measure of a physical ability (e.g.,
how good is a given machine in balancing, which is a measure used in the case study of Part II). The
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Figure 4.1: Overview of optimisation framework.

former is an optimisation experiment where a given mechanism’s optimal behaviour is sought for a
given task.

The proposed approach aims to maximise a design’s physical ability by meeting or surpassing
a given set of performance objectives. For this reason, the focus of this study is on the plant via a
behaviour optimisation study, and not the controller of the robot. The framework works under the
assumption that if the design is physically capable of achieving the objectives in any feasible way, a
controller (or controllers) can be designed to reproduce these behaviours in the real robot.

For each optimisation performance test, the design can fail or succeed, and conditions of failure
can be imposed as a set of constraints. The outcomes of each optimisation test of Layer 2 are the
following.

1. Scores—are values that reflect the performance of the robot for a given objective, they can be
either:

• a performance score—a score reflecting its best performance for the given objective, or

• an effort score—any value that can reflect how much effort the system made to reach the
given objective.

2. Constraints—a vector of constraint values, which are the elements of the equality and inequality
constraint expressions.

3. The optimal behaviour that achieved the best performance score.
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For each performance objective the three results or the intrinsic value (if it is not a behavioural
optimisation) are passed on the Mechanism Layer. When all of the experiments in Layer 2 are
completed, the optimisation algorithm in Layer 1 evaluates the design’s overall performance and
generates new designs. As can be seen in Figure 4.1, the framework allows for multiple objectives,
which leaves the possibility open for objectives of conflicting nature. The final outcome is a Pareto
front of optimal designs and their optimal behaviours for each one of the performance objectives.

Co-optimisation

The presented framework is an example of behaviour and design co-optimisation. This thesis argues
that taking into account a detailed description of a robot’s performance objectives (the tasks it is
designed to perform) in the design process is essential for obtaining more capable, robust and skilful
robots. The design and the behaviours of the system have an inextricable relationship which is a
topic of interest in various disciplines such as sports science and biology. Dickinson et al. [21]
investigated the relationship between locomotion capabilities (behaviour) and structure of various
animals, including humans. Animals and humans have different characteristics that promote certain
behaviours. For example, cheetahs are faster than humans and in fact they are the fastest land animals
on earth. Apes, which are structurally similar to humans are extremely nimble climbers, but humans
are not. Even between humans there can be vast differences in performance. In sports, some athletes
perform better than others and become champions. Is it hard work, some distinct feature that they
have, or both that helps them perform better than others? Optimal behaviours can be obtained by
hard work, which means trying repeatedly to improve performance, and the more potential a system
has the better the optimal behaviour can be. For that reason the inextricable relationship between a
mechanism and its behaviours must not be neglected during the design process.

Performance, Constraints and Effort

An important concept of the framework is the exchange of information between the two layers. Layer
1 searches the design-space for the designs that can achieve the best compromise between all of the
performance objectives (a Pareto front). To evaluate each design and efficiently discover the best
designs, Layer 1 needs adequate and useful information. Performance objectives could be achieved
in many different ways and finding the best way is not easy due to the multiple factors that affect
performance. Due to limited resources, the optimiser cannot explore all of the search-space, meaning
that it needs useful information for reaching better and faster solutions. For this reason, it is not
sufficient for the mechanism layer to know just a succeeded/failed and a performance score, but
information on how easy or difficult it was for the design to reach its best behaviour.

The performance score is used to evaluate the fitness of the design for a given objective. The
importance of this parameter is evident, since this is what the designer wants the robot to do, and
is the main guiding rule during the search process. The effort score reflects how easily the design
met a performance objective. It is any value that can be an indicator of how close is the returned
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behaviour to the mechanism’s true potential (e.g., its optimal behaviour). For example, two different
mechanisms might achieve the same objective, but one did it by spending less energy than the other,
which means that it required less effort to achieve that objective.

Constraints draw the line between success and failure for a given behaviour. In addition, they also
show the margin of success or failure, so that the optimiser can know whether a design easily met all
of the constraints, barely met them, marginally failed, or failed by a large margin. For example, if the
mechanism easily met the constraints, then there is a chance that it has the potential to perform more
difficult tasks. This information is essential for the search process because it guides the optimiser
towards optimal designs.

Overview

In the following sections a detailed description on how the proposed approach can be applied for the
problem of design optimisation of high-performance mobile robots is presented, together with some
of its most important concepts. The approach can be summed in four steps.

1. Building a model.

2. Determining the type of the problem.

3. Selecting Software.

4. Optimisation Methodology.

This chapter discusses several aspects of the design study with the aim to provide sufficient
information for tackling the general problem of design optimisation for mobile robots. The steps and
techniques presented here are aimed for mobile robots but are not restricted to them.

4.2 Building a Model

In this section the important concepts and steps for building a model of the system are presented.
The model includes: (1) a model of the robot’s hardware, which completely defines the robot, (2) a
model of the robot’s behaviour that can capture all the important aspects of the behaviour, and provide
enough freedom for the system to explore its true potential, (3) the operational constraints, that set
limits on what the system is allowed to do and to what extent, and (4) the performance objectives that
define what the robot must achieve.

4.2.1 Realism of the Model

Before diving into details about the steps that are required for building a model, a discussion must
be made on the meaning and importance of realism in this approach. Realism of a model refers to
how close is the theoretical model’s behaviour to the behaviour of its real counterpart, and it can
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be determined by the level of detail and the validity of assumptions that are made in the modelling
process. More accurate models tend to be more complicated, and require more computation time.
Less complicated models tend to be easier to understand, require less resources to execute, but might
not be as accurate. This creates an important trade-off between simplicity and accuracy of the model,
which is discussed in this section.

A realistic design study has many advantages and can lead to:

• fewer design cycles, meaning less time and cost;

• robots that meet their design expectations;

• unprecedented behaviours, and

• efficient use of current technology (reach the mechanism’s maximum potential).

Assumptions

Assumptions are an important part of the modelling process. The assumptions made during a study
must be clear and thoroughly investigated, for the reason that if they ignore significant information,
the results cannot be trusted. Assumptions can also lead to simpler models, more understandable and
less computationally expensive.

High-performance robots are fast. This means that dynamics are important, and accurate modelling
is necessary so that the real robot can perform similarly in simulation and reality. In this work
emphasis is given on the realism of the dynamic models of the robot and its behaviours, which is
largely neglected in the majority of the literature, except in a few cases such as Spielberg et al. [104]
and Ha et al. [46], that use realistic dynamic models for actuators in their simulations. The aim is to
close the gap between simulation and reality so that the desired performance can be achieved without
the need of multiple design iterations.

Accuracy Vs Simplicity

Having realistic models seems to have many advantages. However, what are the pitfalls of detailed
modelling, and how much effort should be spent when building a mathematical model? An important
factor that must be taken into account in the modelling process is the trade-off between accuracy and
simplicity. A model should be created after a deep understanding of the underlying mechanism is
acquired, followed by validation tests (wherever possible). Even with this though, a perfect model
that can take into account every possible variable and scenario is almost impossible to build, and even
if we could do that it would require a lot of resources to do so.

Complexity can improve the realism of the model but can result in models that are difficult to
understand and can also lead to numerical instability problems (e.g., round-off or truncation errors
that lead to loss of precision, crushing or stalling of the simulation). In addition, it comes with the risk
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of over-fitting. What if there is a factor we forgot to model or modelled in the wrong way? Then the
robot would have been optimised for something different than reality, and will not work very well.

For that reason models must be as simple as possible and in most cases come with/from experi-
mental results for validation. Models will most certainly be imperfect; however, the better they are,
the closer the real robot will be to the desired performance requirements. The modelling process
described here and the models that are presented in the case study of Part II are created with simplicity
in mind.

4.2.2 Hardware

The hardware includes all the physical components of the robot and their limitations. Parts with
behaviours that have an impact in the overall performance of the robot must be thoroughly modelled
(e.g., the motors), while other parts with insignificant behaviours can simply have their masses added
in the model (e.g., dust covers protect components of the robot from getting contaminated by dust, but
for a design study simply including their mass in the model would suffice).

In this part, a general discussion on important components of robots and concepts for generating
numerical models for the purpose of simulation and optimisation is presented. Building such models
requires a deep understanding of how robots work as well as the requirements of the system for the
desired applications. Examples of such models could be the following:

1. a dynamic model of the mechanism, including a kinematic model and limitations;

2. models of sensors, including limitations (e.g., noise, drift, saturation, resolution, time delays);

3. models of actuators, including limitations, and

4. models of other parts, such as transmission mechanisms, power supplies, joint motion end stops,
springs, dampers, crash protection, and limitations such as: voltage, current, speed, force/torque,
stroke, hysteresis, friction, efficiency, stress/force limits on parts (especially bearings).

Not all of the aforementioned are necessary for all robots and applications. For example in the
design optimisation of a soft robot the topology and the properties of the material that make up its
body are essential for the study because they directly affect its behaviour (e.g., Hiller et al. [50] and
Cheney et al. [17]), but such properties are not needed to model a robot made of stiff (almost rigid)
parts.

Dynamic Model

A dynamic model is a set of data from which the robot’s equation of motion can be calculated. The
dynamic model includes:

• a kinematic model and its limitations (e.g., motion range limits for avoiding self collision and
singularities);
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• mass and inertia data of each body;

• material properties and limitations, which are relevant for soft robots such as: stiffness,
stress/force limits, or density.

Kinematic Model—defines an abstract representation of the robot’s skeleton sufficient to describe
the robot’s degrees of gross motion freedom, and can include open-loop and closed-loop kinematic
chains (e.g., a four-bar linkage). In more detail, the kinematic model defines:

• the number of bodies (or links) and joints (which are the same in the absence of kinematic
loops);

• connectivity data: define how and in which order the bodies are connected together;

• joint data: define the type of joint with relevant joint parameters, and

• geometry data: define where the joints are located in each body.

Connectivity data are relationships describing how bodies are connected to each other. As an ex-
ample, in special cases kinematic trees can be used to describe connectivity in rigid body systems
(Featherstone [29]).

Joint Data may include special joint parameters (if there are any) and the types of joints, which for a
rigid robot with the most general ones being the following.

1. Prismatic joints: the relative motion between bodies is a translational sliding motion parallel to
a straight line.

2. Revolute joints: the relative motion is a pure rotation about an axis that is fixed in both bodies.

Geometry data defines the location of each joint relative to two body coordinate frames.

Mechanical Limitations arise from material properties and the geometry of parts. Modelling them
can lead to more robust designs and behaviours. By performing a crude dynamic analysis on the
various parts of the robot an estimate of the forces on the joints and parts can be calculated. The
analysis can be performed on the most demanding behaviour of the system. These estimates can define
an upper limit on the forces that the part/system will be under. By using these limits, appropriate
mechanical components can be selected and their limits can serve as force/torque constraints which
must not be violated during the behaviour optimisation. In this way the design will co-evolve with
behaviours that do not surpass the stress limits of parts, and produce a more robust system.

An example of such components are ball-bearings, which come with a maximum load that they
can withstand before breaking or deforming. Stronger bearings can be bought, but they are bigger and
heavier, which will result in bulkier and slower robots. For this reason, it is wise to set an upper limit
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to forces based on a preliminary study to ensure that appropriate parts for designing the robot exist.

Rigid Robots—assuming rigidity when designing or controlling a robot is a common practice that
leads to simplified and easier to understand models. Under this assumption the links of the robot
(except explicitly stated such as in the case of springs) do not undergo deformation. In reality all
bodies under a load experience some form of deformation; however, many robot links are built with
stiff materials (such as aluminium alloys or fibre composites) and this simplification of the model
results in small model errors. For rigid body systems there is a variety of algorithms for estimating
the states of the links (such as the Recursive Newton-Euler Algorithm (RNEA) for inverse dynamics
and the Articulated Body Algorithm (ABA) for forward dynamics [29]).

Soft robots in contrast, are robots containing compliant bodies. These robots undergo significant
deformation, and the assumption of rigidity can no longer be used. In soft robots kinematic and
dynamic modelling is more challenging than rigid robots. Scientists approach the modelling problem
with simplifying assumptions (such as the Piecewise Constant Curvature (PCC) model in Webster
and Jones [109]) or finite element based modelling (Rus et al. [90]). The first method leads to some
loss of accuracy due to the assumptions taken in the examined model, while the later leads to intense
computations that require a lot of time to complete. The framework proposed in this thesis is applied
to a specific case of a rigid-body robot; however, as is explained in Section 4.6.4 the framework could
be applied to any type of robot (including soft robots) with a well defined dynamic model, behaviours
and objectives.

Models of Sensors

To adapt in dynamic environments and produce robust behaviours, robots need to perceive their
surroundings through sensors. Sensing is an integral part of the control stage of a robot. So why is it
not also a part of the design process? A system can react to external stimuli only if it can perceive
them. If the system cannot sense a stimulus, perceives it with a delay, or even without adequate
information, then it cannot react properly to it, which leads to sub-optimal behaviours. To achieve
top physical performance the robot must know what are the limits of its sensorimotor capabilities
and adapt its behaviours to them. For this reason, models of sensors (and actuators which are ex-
plained in the next section) and their limitations must be taken into consideration in the design process.

Sensors are input devices which produce an output signal to quantify a specific physical quantity (i.e.,
the input). There exists a variety of sensors for measuring different quantities. The types of sensors a
robot might need to be equipped with varies according to the application. Important types of sensors
are state estimation sensors, which provide information about the robot’s states such as its position,
velocity, orientation etc. Examples of sensors are shaft encoders, tactile sensors, temperature sensors,
accelerometers, LIDARs or Inertial Measurement Units, which use a combination of different sensors
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Figure 4.2: Example of saturation behaviour when an IMU’s accelerometer maximum range is reached,
in a sensor with an equal positive and negative maximum range. x axis values represent time and y
axis values are g. Inner figure is a zoomed area demonstrating an example of Gaussian noise with
zero mean and Root mean square (RMS) of 0.05g.

to measure orientation, angular rate and accelerations. All sensors inherently come with limitations
which may be, but are not limited to the following.

• Measurement noise—sensor signals are polluted with noise. The source of this noise can
be electrical or mechanical and depends on the environment of the sensor (e.g., factories are
noisy environments). The most common type of noise in sensors is Gaussian, and a parameter
for quantifying sensor noise that is commonly provided by manufacturers in the sensor data-
sheet is Noise Density. An example would be to use this parameter to build a model that
can be incorporated in the simulations to examine how the system and its controller evolve
with realistic uncertainties in the system’s measurements. An example of such experiment is
performed in Featherstone [31], and a visual representation can be observed in Figure 4.2.

• Range—the range of the sensor is the maximum and minimum values that can be measured.
Depending on the application this limitation may also have a great impact on the design and
its behaviours. Not all robots need to operate near the limit of their sensing capabilities, but
these limitations should be taken into account during the design study. In average cases they
provide an upper limit on the robot’s operational range and in extreme cases they can even
directly affect a behaviour which can be optimised to avoid or operate near these limits. For
example, high-performance mobile robots might experience extreme accelerations in a case of
crush landing or even during normal operation. If these accelerations surpass the limits of an
equipped accelerometer (e.g., saturation limit), the sensor might be damaged or not provide
reliable measurements for some time. Behaviours that take into account such limitations are
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examined in the case-study presented in Part II, and a visual example of a saturation behaviour
can be observed in Figure 4.2.

• Time delays—sensors do not instantly change their output when a change in the sensed
quantity occurs. Additional delays can be added by processing of the data (e.g., filtering, extra
computations etc.) causing the system to perceive its environment with a delay. Depending on
the application this may have an impact on the controller of the system, and might be worthy to
examine, especially in fast robots.

Before proceeding with the modelling part a research on available sensing technology and an
evaluation of available resources for obtaining it must be performed. The designer must examine the
available sensing technology to determine which sensors are needed for the examined system, and
selection must be made according to the costs of the sensors, their availability and other project specific
requirements. These requirements may include sensor accuracy, power consumption, sensitivity,
precision, resolution, offset errors, linearity, hysteresis, quantization errors (in digital sensors) and
more. An elaborate discussion about the different types of sensors, their applications and their
limitations can be found in Fraden [35].

Depending on the application and the optimisation process different limitations can be incorporated
into the study. In the case of an open-loop control (i.e., behaviour optimisation) feedback related
parameters such as measurement noise are not relevant. In the case of controller optimisation,
feedback-related parameters such as time delays and measurement noise can be incorporated into
the model for exploring robust designs and controllers. Even if the sensor limitation values are not
exact (e.g., assuming a Gaussian sensor-noise distribution with a given mean and standard deviation),
integrating them to the simulations can help study the effects of such limitations in co-evolution of
the design and its behaviours, and result in more robust robot designs.

Further analysis that not necessarily need to be included in the optimisation process may include
redundancy of the sensors and their distribution on the robot. For example, if a controller is optimised
that requires as input an angular acceleration value, the robot needs to be equipped with at least two
IMUs. In systems that experience strong shocks due to rapid body accelerations/decelerations (e.g., a
legged robot might experience this during landing after a high jump, something that might saturate
its accelerometers), careful consideration must be taken during placement of the sensors. Singh and
Featherstone [102] propose a method that uses the Centre of Percussion (CoP) for placing sensors on
legged robots, in such a way that the effect of shocks on the sensors during locomotion is minimal.

Models of Actuators

In the previous section the need of sensing models was discussed. Sensing and actuation are two
different but inseparable items and are usually referred to as one instance with the term sensorimotor
capabilities. Sensors perceive the environment and estimate the robot’s state, while actuators are
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responsible for generating motion. Actuators require an energy source and a control signal to convert
the former into mechanical motion.

Actuator models play a crucial role in achieving the required performance, and are responsible for
producing the power that the system needs to move and subsequently reach its goals. They come in
various forms and can be coupled with gears for producing more torque or speed.

The most common types of actuators in mobile robots are the following.

• Hydraulic: produces power from pressurised fluid (usually oil).

– Pros: suited for high-force applications.

– Cons: bulky, noisy and require regular maintenance, can leak fluid and lose efficiency or
damage surroundings.

– Power source: a compressor.

– Control signal: an electrical signal sent to the hydraulic valve.

• Pneumatic: produces power from pressurised air.

– Pros: operation in extreme conditions, are naturally springy, and lightweight.

– Cons: pressure losses can lead to less efficiency, requires maintenance, they are not very
precise and they are noisy, and might require some kind of gear to convert the high-speed
low-torque output of the motor to something with lower speed and higher torque/force.

– Power source: a compressor.

– Control signal: an electrical signal sent to the pneumatic valve.

• Electric: produces power via interaction between an electric current and a magnetic field.

– Pros: higher precision and higher bandwidth than hydraulic and pneumatic actuators,
quiet, compact and small.

– Cons: can overheat, they are not suited for all environments and can be more expensive
than hydraulic and pneumatic actuators.

– Power source: electric current.

– Control signal: a voltage sent to the motor driver circuit.

Including the actuator’s dynamic model and optimising its input signal results in a more realistic
optimisation study. Moreover, in contrast to optimising an output value (such as forces or torques),
taking into account the actuator’s dynamic model and its limitations results in behaviours that have a
higher chance of being reproducible and feasible in reality (e.g., not all torque profiles can be achieved
by all actuators). Limitations of actuators can be force/torque, speed, power, thermal limits and more.

Off-the-shelf actuators usually come with a set of specifications that are detailed enough to build
a realistic model of the actuator. An example of such a dynamic model is presented in Part II, where a
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Figure 4.3: Left: Hyq2Max [98] demonstrates the power of hydraulic actuators by pulling a three-ton
plane; right: a high-performance balancing robot equipped with small and fast brushed DC motors
(see Section 5.5).

model of a DC brushed electric motor is built based on supplier specifications.

Actuator Selection—actuators should be selected based on the intended applications of the robot;
however, their selection can also be a part of the optimisation process. They can be modelled in the
optimisation as discrete components to form a mixed-integer optimisation problem. Nevertheless,
an initial analysis on the performance objectives and the robot can provide enough information
for selecting an appropriate actuator, and if resources allow, different actuators can be part of the
optimisation study. For example, if the robot is designed for highly dynamic behaviours an actuator
with high-power output should be selected, while a robot that is designed to lift or displace heavy
objects needs actuators with a high-torque output, such as hydraulic actuators.

Models of Other Parts

In this stage remaining parts of the robot’s mechanism that effect its performance should be modelled.
These are parts that either have a direct affect on the behaviour of the robot (e.g., a transmission
mechanism changes the behaviour for the actuation system), or have mechanical limitations that must
not be surpassed (e.g., the maximum force a bearing can withstand). Examples of such parts are the
following.

• Power supplies and their limitations—for example an electrical motor and the battery have
an upper limit on the amount of current or voltage that can be drawn/supplied.

• Transmissions are mechanisms for transmitting and transforming power. They can be gear-
boxes, clutches and direct drive mechanisms. These mechanisms can have losses due to friction,
speed limits and limitations on the maximum amount of force/torque that they can withstand.
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• Energy dissipation components for improving the robustness of the robot, examples of which,
are the following.

– End-stops—are soft springy parts for dissipating energy. They help prevent the robot
from harming itself from self collisions. Most robots should have them for preventing self
damage. In special cases they might also be actively used in a behaviour (e.g., dissipate
energy when the robot needs to stop).

– Crash-protection—is a component for improving the robustness of the robot. In real ex-
periments several things can go wrong (including software errors) and undesired scenarios
will occur, such as a crash landing. All the previous parts were useful during normal
operation, but this part exists solely to minimise the damage in undesired scenarios.

• Energy storage components such as springs, and their limitations, which are used for storing
and recycling mechanical energy. Depending on the application they can be made of different
materials and in different shapes. In highly dynamic motions these components are responsible
for recycling the necessary energy for achieving performance objectives, and hence are very
important. Their profiles and limitations such as hysteresis, yielding point, and efficiency can
be evaluated via stress-strain tests (see Section 5.3.1).

Physical Constraints

Because the mechanical model already includes many physical constraints, it is reasonable to treat
modelling and physical constraints together. As mentioned in the introduction of this chapter, the
constraints define the line and the margin between success and failure for a behaviour. They can be
equality or inequality constraints, and could be divided into two main categories.

• Kinematic Constraints: e.g., avoid self-collision, joint limits etc.

• Mechanical Constraints: e.g., actuator torque limits, sensor saturation limits, yield points of
parts and more.

Scaling—the constraints must be converted to equality or inequality constraints to be used by the
optimisation algorithm. However, the constraint values might be of different orders of magnitude,
which might mislead the optimiser. For this reason it is advisable to scale the constraints.

For example, ground-force reactions can be in the order of hundreds of newtons, but joint limits
can be a few radians. A constraint violation of 1 N (which is very small) is not the same as a joint
rotating 1 radian past its limit. The same reasoning can be applied to the objective function values.

4.2.3 Behaviour

A behaviour is the actions that an individual system, or in the context of this thesis a robot takes.
These actions are performed for achieving a performance objective. In the proposed optimisation
approach, a robot’s behaviour to achieve a set of performance objectives is optimised.
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The main idea behind the proposed approach is the maximisation of a robot’s physical performance.
This means that the plant is the main focus of the presented work. Modelling of a behaviour can
vary for different examined cases. In this thesis the following general categorisation of the behaviour
parameters is proposed.

1. Initial parameters,

2. outcome parameters, and

3. input parameters.

Initial Parameters

Initial parameters describe the state of the robot, and other relevant quantities at the beginning of the
behaviour. They can be independent or dependent variables. Examples of initial parameters are state
variables, such as positions (e.g., of joints), velocities, temperature and other key variables such as
accelerations. These parameters, together with a set of assumptions, should be sufficient to describe
all the quantities of interest at the beginning of the simulation.

Input Parameters

These parameters describe the actions that the robot takes during the simulation. They are independent
variables and are decided by the optimisation algorithm. They can be: (1) an open-loop behaviour
such as applied forces/torques or the input to the actuator (e.g., voltage, current or pressure), or (2)
a closed-loop behaviour such as the gains of a parametric controller. Open-loop behaviours evolve
over a time window, which means that time duration parameters must also be defined with them.
The values that these parameters are allowed to take are bounded, and their limits are defined by
the limitations of the related components (e.g., power supply and actuator), or other behaviour time
limitations. For example, in the case of an electric motor these values cannot surpass the maximum
voltage that the batteries can supply, or the maximum current of the motor.

Outcome Parameters

Input and initial parameters are actions taken by the robot, while the outcome parameters are dependent
parameters that describe what those actions achieve. They are things that must be true either in the
duration of the entire behaviour, a part of it or the end of it. Examples of these can be: forces that
must not surpass a given limit, a desired final condition (e.g., have a given CoM velocity at the end
of the behaviour), a percentage of the behaviour duration that an event occurred (e.g., motor current
saturation for 45% of the behaviour).

Behaviour or Task Constraints

Behaviour or task constraints define the way a behaviour must be executed. They can be:
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• things that the robot should do or achieve (during the entire period of the behaviour or just at
some point of it e.g., be at a specific state when the behaviour ends), and

• things that the robot shouldn’t do during a behaviour (e.g., the behaviour shouldn’t last more
than 0.3 s or the robot shouldn’t excessively slip during a behaviour).

Scaling—similarly to physical constraints, behaviour constraints might have different units and their
values might be in different orders of magnitude, hence to be effectively used by the optimiser they
must be scaled.

4.2.4 Performance Objectives

Performance objectives quantify what we want the robot to achieve. This section presents a discussion
on how the performance objectives can be selected, the concepts behind their selection, and how they
can be mapped into optimisation objectives. The guiding principles behind the choices are: versatility
(if required), reachability, approaching the performance envelope, and minimality.

Performance Envelope

Before embarking on the design study the performance envelope must be defined. The performance
envelope refers to the capabilities of a design in terms of the desired task (such as speed and power).
After a general idea of what the robot needs to achieve is defined, the most demanding performance
objective of the robot should be sought.

Determining the performance envelope enables the designer to make initial design decisions (such
as how many springs the robot will have, what type of motors will be used and more). These results
can be obtained via simple calculations or via preliminary optimisation experiments (e.g., if we want
a robot to perform very high vertical jumps we can simulate only this behaviour to determine which is
the highest jump it can achieve).

Versatility

In industrial environments, conditions are controlled, and hence mostly predictable. Industrial robots,
which are usually stationary, need to perform one task or a family of closely related tasks such as
assembly/disassembly of parts. However, in real world scenarios, mobile robots need to cope with
high uncertainty and demonstrate multiple different behaviours. In addition, these behaviours can
place conflicting requirements on the robots, making design decisions even harder.

As mentioned in Section 2.1, multi-objective problems represent a class of problems that are
generally difficult to solve, and require sophisticated software. Furthermore, with more behavioural
objectives come more simulations.
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Minimality

This concept simply means keeping the number of objectives as small as possible in order to keep
down the required resources of the design study. Every behavioural objective is an optimisation
experiment by itself. This means that each new performance objective added may result in a substantial
computation time added.

Reachability

The term ‘realism’ does not only apply to the robot’s models, but also to how the robot achieves its
objectives. Reachability refers to the fact that many performance objectives have prerequisites. The
behaviours must be achieved in a similar manner that they would have been achieved in the real world.
Behaviours must be a chain of interconnected steps that the robot can achieve, starting from a home
configuration and be able to return to that point in some way.

As mentioned in the introduction, performance objectives can be either: (1) an inherent property
of the robot, or (2) a behavioural objective. One example of the former is to minimise mass or size,
and for the latter is to find a behaviour that can reach a given goal such as to perform a 2 m vertical
hop. For example, in the case study presented in Part II, a monopod robot is optimised to reach its
highest vertical hopping height. However, the robot can achieve its highest hop only after a fall from
a given height. This happens because the robot needs to recycle stored energy in its springs. This
means that for achieving the latter objective, a series of intermediate performance objectives (which
are increasing height hops) must be achieved.

Moreover, a study is not complete if only the behaviours for reaching an objective are defined.
Behaviours for returning to a home state must also be studied, unless doing so is trivial. Coming back
to the case study of Part II, when making a 2 m vertical hop we also need to define what will happen
afterwards. If the robot ends up crashing after reaching that height, then this robot will have zero
practical use.

Optimality of Sequence

In an optimisation study, a robot and its corresponding optimal behaviours for achieving a specific set
of objectives can be sought. In this case the robot must achieve an objective with specific initial and
final conditions. In other words, we want the robot to meet an objective by a predetermined series
of intermediate objectives. This simplification reduces drastically the search space and produces
faster results; however, it does not allow the optimiser to search for optimal ways for reaching its
performance envelope.

A more general problem would be to allow the optimiser to perform a series of intermediate
experiments to find the optimal way of reaching its performance envelope. However, this problem
is at least exponentially more difficult to solve than the problem with predetermined intermediate
objectives. In the case-study of Part II, a monopod robot is optimised to reach its maximum vertical
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hopping height. To do so, it is required to perform a series of increasing-height hops. This can be
achieved by allowing the optimiser to explore a connected sequence of hops, beginning and ending at
rest, such that the first few build up to a maximum-height hop and the last few come back down again.

Mapping Performance to Optimisation Objectives

To be used by the optimiser, performance objectives must be mapped to optimisation objectives. The
latter, can be any of the following.

1. Reaching a given performance goal, in this case we are minimising an error term, such as:
min

∥∥xoutcome −xtarget
∥∥

2, which defines a quadratic objective function which has generally
desirable properties (Section 2.1).

2. Seeking the best value for a given performance objective. Could be either a maximisation or a
minimisation objective.

4.3 Determining the Problem Type

Having obtained a model, a set of optimisation objectives and a set of constraints, the problem type
can now be determined. The importance of this step was extensively discussed in Section 2.1. The
designer needs to identify what is known about the nature of the formulated design optimisation
problem so he can: (1) understand the complexity of the given problem (how difficult it is to solve),
and (2) select the appropriate optimisation techniques for solving it.

As presented in Chapter 2.1, any given optimisation problem can be classified in any or many of
the following categories.

1. Continuous Vs Discrete Vs Mixed Integer Optimisation.

• Continuous: all the independent variables are continuous.

• Discrete: all the independent variables are discrete (e.g., natural numbers).

• MI: some independent variables are discrete and some continuous.

2. Unconstrained versus Constrained Optimisation.

3. None, One or Multi Objective Optimisation.

4. Convex Vs Non-Convex Optimisation.

• Convex: the objectives are convex and the feasible set is a convex set.

• Non-convex: if convexity can’t be determined, then the problem can be considered to be
non-convex.

5. Non-linear Vs Linear Optimisation.
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• Linear: the objectives and constraints are linear (the problem is also convex).

• Non-linear: at least one objective or constraint is non linear.

6. Deterministic Optimisation Vs Optimisation Under Uncertainty.

• If the model contains random elements with a known distribution (e.g., any of the objective
functions can produce a different output for the same input), then it is stochastic.

In complicated models it is sometimes difficult to tell if the problem belongs in some of the
aforementioned categories. For example, problem types 1, 2 and 3 are part of the problem’s definition
so the designer can decide if the problem can be formulated to belong to any of these categories. In
problem type 6, the designer can also decide if uncertainty should be included in the model.

However, problem types 4 and 5 depend on the mathematical properties of the objective function
and the constraints. Determining if a system is not linear can be easily verified by checking either the
mathematical formula of the objective function or by sampling the model. The big challenge lies in
convexity. If convexity can be verified, then a series of efficient algorithms can be applied for solving
the problem (Section 2.2). Proving convexity however is not an easy task if a closed form solution of
the model does not exist. For this reason, it makes sense to treat problems where convexity cannot
be proved as non-convex, and solve them using global optimisation techniques. In any case, local
optimisation techniques can also be applied, but only one solution will be returned.

4.4 Selecting Software

The next step in the optimisation process is to select an appropriate software for the type of the
examined optimisation problem. Optimisation software comes in three kinds of packages:

• Modelling software to formulate the problem.

• Solver software for running the simulations.

• Optimisation software with optimisation algorithms and analysis tools to address the examined
type of problem.

4.4.1 Modelling

Modelling software is used for formulating the problem on a computer. In this software the model of
the mechanism and the behaviours can be interpreted in a software language or workflow for analysis.
Various modelling software platforms represent models with different approaches (such as a workflow
or simply by coding), integrate with other applications, or differ in the ways they process results
and invoke solvers. Despite that, all modelling software has one purpose, and that is to produce
computational models to be executed in a computer.
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The modelling software must be simple enough to use and provide enough freedom for modelling
and simulating all the important aspects of the robot’s mechanism and its behaviours. The input to
the software are all of the variables (both dependent and independent) that define the models, and its
outputs are values for visualisation, producing constraint and objective value functions, or for any
other purpose. There is a large list of available simulation software for every need such as Simulink,
Adams, ANSYS and more.

4.4.2 Solver

Solver software are used for solving mathematical problems via numerical analysis, and they usually
come together with the modelling software. They are concerned with finding solutions to specific
instances of the examined problem, and in this thesis context to simulate the behaviours of mechanisms.

Selecting a solver is an important step because it plays a major role in the: (1) quality of solutions
(they introduce truncation errors), and (2) the computation time of each problem instance evaluation.
Solvers use different methods for solving the numerical integration problem that can be categorised
according to their order. Methods with higher order are more accurate, but require more time to
execute. Depending on the problem, the type and the optimisation method an appropriate solver can
be selected. If a gradient-based optimisation algorithm is used for solving the problem there is a need
for numerically accurate simulations, and hence a solver of high order must be selected for exploiting
efficiently the gradient information. More details about simulation and modelling can be found in
Law [60].

4.4.3 Optimisation

Upon acquiring a computational model of the examined system, an appropriate optimisations software
must be decided. Based on the problem type (Section 4.3) an appropriate numerical optimisation
method must be selected. Just like the modelling software, there is a variety of commercially and
open source available optimisers.

Each software comes with its own implementation of optimisation algorithms and various tools
that assist the optimisation process. The factors that must be taken into account for selecting an
optimisation software are the following.

1. The optimisation software must have a bridge library with the modelling software so they can
exchange information (Figure 4.1).

2. The software should have an implementation of at least one algorithm that is appropriate for
the examined problem type.

3. The software is efficient, meaning that it has efficient implementations of optimisation algo-
rithms, fast communication between all the interconnected software, and is easy to use.
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4. It is desirable if the software also has pre-processing, post-processing and data visualisation
techniques, if not an additional software for this reason must be selected. Interpreting and
analysing the data is a very important step for the overall optimisation process (see Section
4.5.5).

4.4.4 Proprietary Vs Open Source

At the time this thesis is written a large variety of proprietary and open source platforms exist for the
previously mentioned software. Selecting a software depends on various factors such as availability
(if the designer already has the software), familiarity (if the designer already knows how to use it),
simplicity, appropriateness (if the software contains the desired optimisation method), and cost of the
licence.

Open source software as well as proprietary software are widely used in industry and academia
under reasonable conditions (such as Matlab’s Optimisation Toolbox [68], Gurobi or ModeFrontier
[27]). However, a large portion of software for global optimisation is proprietary, which is usually
more robust and more reliable, but comes with a high price.
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Figure 4.4: Optimisation methodology overview. Prior to each experiment a DOE is performed to
obtain qualitative initial information. Each experiment uses the optimisation framework presented in
Section 4.1.

4.5 Methodology

The previous sections described how to set-up the problem. In this section a methodology for running
the optimisation experiment is proposed. The optimisation methodology can be described by six steps,
with each step having a specific purpose and reasoning. These steps help improve the quality of the
obtained solutions and allow the designer to use appropriate criteria and tools for selecting the best
design depending on the application. The overview of the proposed optimisation methodology is
presented in Figure 4.4. In summary, the proposed steps are the following.

1. Preliminary design space exploration is performed with DOE techniques to maximise the
quality of initial information using a small sample of the search-space. This step is performed
independently and prior to each experiment.

2. Sensitivity analysis for gaining a deeper understanding of the examined problem, for making
early design decisions, and for selecting the most important parameters to optimise.

3. Rough optimisation for finding approximate local optima by using global search algorithms.

4. Refinement of the Pareto optimal set by using local optimisation algorithms to improve the
quality of the Pareto front.
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Figure 4.5: DOE for global optimisation example in an arbitrary 3 D function. Black spheres represent
initial points for the optimisation process. Using an appropriate DOE method can result in an efficient
coverage of the search space, with some initial points ending up close to some of the objective
function’s optima.

5. Robustness analysis for finding the most robust designs in the presence of expected uncertainties
in the real systems (e.g., manufacturing errors, initial conditions etc.).

6. Post-optimisation analysis for evaluating the results based on a set of criteria.

In the following sections, a detailed explanation of each step, its purpose, its drawbacks and its
advantages is presented.

4.5.1 Design of Experiments

An important preliminary step before any optimisation experiment is to maximise the quality and
quantity of initial information. Qualitative information can lead to: (1) reduced time and resources for
the experiment (i.e., fewer experiments, faster convergence of algorithms, and higher completeness),
(2) better coverage of the search space, (3) improved understanding of the examined system, and (4)
higher chances of finding a global optimum. This is performed using Design of Experiments (DOE)
techniques. DOE are techniques for generating initial samples of the design space, which can serve
for various experiments and purposes.

Applications

DOE techniques can be used for various applications. In the context of robot design, the following
DOE categories are of interest:



4.5 Methodology 79

1. DOE for statistical analysis,

2. DOE for optimisation, and

3. DOE for robustness analysis.

DOE for statistical analysis is used for extracting the most relevant qualitative information from
a small set of samples. These techniques are suitable for sensitivity analysis. They sample the
search-space in a way that a sufficient coverage is achieved and redundant information is eliminated
(they produce low-correlation samples). This means that the generated values are distributed in a wide
range of the search-space. Examples of such algorithms are factorial algorithms (Figure 4.6), Latin
Square algorithms and Monte Carlo sampling methods (Saltelli et al. [94]).

DOE for optimisation is used for generating suitable initial populations for optimisation experiments.
By having a favourable distribution of initial samples over the search-space the chances of landing
close to the global optimum increase. Having said that, robust algorithms (Section 2.2.1) should
not be affected by the quality of the initial population, but only for a sufficiently large number of
iterations, which available resources do not always allow. Regardless of that, proper initial population
sets increase the chances of a faster convergence to the global optimum, which is always preferable.

A common approach in global optimisation algorithms is to have a portion of the initial seeds gen-
erated by a DOE for exploration, and a portion consisting of seeds that are known to perform well for
exploitation. Suitable algorithms for DOE optimisation are Space filler algorithms. These algorithms
incrementally generate new designs by maximising the distance (in the search-space) between the new
and the previous samples, or by uniformly sampling the search space (e.g., Monte-Carlo algorithms).

DOE for robustness analysis aim to find designs such that their objective function values lie on flat
peaks. This means that small variations of the input variables will not significantly deteriorate the
robot’s performance. This method increases the chances that the real design will perform well even in
the presence of uncertainties and imperfection in the real world. These techniques are used to sample
points with specific mean and variance around a given point (e.g., Monte-Carlo methods). Details
about robustness analysis are presented in Section 4.5.6.

4.5.2 Sensitivity Analysis

The aim of this step is to determine which of the design or behaviour parameters (or combinations of
them) have the highest effect on the performance of the robot. By determining the parameters that the
system is most sensitive to, the designer can achieve the following.

• Reduce the number of independent variables. Parameters that have small effect on the perfor-
mance of the robot can be fixed at a specific value. This can reduce the computational resources
required by the experiment.
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Figure 4.6: Left: Full Factorial algorithm which examines every possible combination of variables in
the search-space, but is computationally inefficient for a large number of inputs. Middle: Reduced
Factorial algorithm provides a reasonable, low correlated and efficient coverage of the search-space.
Right: randomly distributed points that have a low coverage of the input-space.

• Gain a deeper understanding of the examined system, which can aid design decisions.

• Identify the most sensitive parameters in the performance of the robot. It is important to get
these parameters right in the real robot. For example if the design is sensitive to variations of
1 mm in a design parameter, then the corresponding component must be manufactured with
an error tolerance below 1 mm, so the design’s performance does not deteriorate. In addition,
components with low sensitivity can have less strict tolerances. This knowledge is important
because manufacturing cost rises with stricter tolerances.

This procedure requires an initial population to be well distributed in the search-space and to
have low-correlated input variables. DOE for statistical analysis techniques are suited for generating
an initial population set (Section 4.5.1). Some examples of initial sampling of the input space for
sensitivity analysis are presented in Figure 4.6.

Sensitivity analysis can be performed with various tools and methods, and the variables of interest
are the following.

• Factors—are the independent or input variables.

• Responses—are the output or the objective function values.

• Main effects—are this step’s output, and quantify the effect that a single factor has on the
responses.

• Interaction effects—if the effect of one factor changes based on the effect of another factor then
that is an interaction effect. Interactions between two or more variables can be examined.

The main idea behind sensitivity analysis is to apply changes on an input variable while keeping the
other variables constant, and measure the percentage of change in the objective function. Sensitivity
analysis can be performed with statistical methods that estimate the effect of each factor to the global
variance. The effect can be estimated using a variety of methods such as regression methods (Saltelli
et al. [94]).
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Figure 4.7: Example rough optimisation of the function presented in Figure 4.5. Rough optimisation
algorithms do not have high accuracy. For this reason, the final result could be solutions in close
proximity to the true optima.

4.5.3 Rough optimisation

In this stage global optimisation techniques are employed for finding rough or approximate solutions.
As mentioned in Section 2.2.3, global optimisation algorithms use metaheuristics that are mostly
stochastic for generating fast solutions that are close enough to optima. These methods are less
sensitive to modelling errors, and escape local minima to eventually reach the global optimum. This
step can be described by the following process.

1. Generate an initial population set with DOE optimisation techniques. If already known solutions
exist (from preliminary experiments or intuition) that provide reasonable results, they can be
added to the initial population set.

2. Select a global optimisation method (see Section 2.2.3).

3. Define the number of algorithm iterations and trade-off between exploration and exploitation by
selecting an appropriate implementation of the algorithm, and by tuning the hyper-parameters
of the algorithm (note: tuning of the hyper-parameters requires a deep understanding of the
examined problem and the optimisation algorithm).

4. Run the optimisation experiment.

These algorithms require an initial population set that can be generated from the DOE techniques
described in Section 4.5.1. With a sufficiently well distributed and large initial population set, an
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Figure 4.8: Refinement of solutions found by performing refinement optimisation on the example
in Figure 4.7. A second round of optimisation on the previously found Pareto front can improve the
quality of solutions.

efficient exploration of the search-space can be achieved, and as a result a faster convergence rate
and a higher chance of completeness can be achieved. There is no standard formula for selecting the
number of initial seeds; however, a larger population and iteration number can lead to better results.

4.5.4 Refinement of the Pareto Set

Global optimisation techniques are known to have low precision, and the optimal results found by
these techniques are usually located near, but not exactly on a true optimum. For this reason a
refinement of the Pareto set needs to be performed. This can be achieved with either local or global
optimisation algorithms (Sections 2.2.3 and 2.2.3) and can potentially improve the quality of the
previous solutions. For each of the solutions in the Pareto front (found in the previous step), a new
experiment can be performed by using them as the initial population set.

4.5.5 Post Optimisation Analysis

This step is mentioned as the last one but could be executed after any of the previously mentioned steps.
The objectives of this step are: (1) to extract information that can be useful for future experiments, or
can be applied to similar robot design studies, (2) get a deeper understanding of the behaviours (such
as patterns) and the inherent characteristics of the mechanisms that promote them, and (3) to select
the designs with the highest overall merit based on a set of appropriate evaluation criteria.
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After obtaining a refined Pareto set, the data can be evaluated and sorted based on criteria for
desired performance. As described in previous sections, a multi-objective problem does not result
in a single optimal design, but in many Pareto optimal designs. Due to a possibly large number of
performance objectives, comparison or analysis of the results might not be trivial. For this reason
proper evaluation criteria that reflect a design’s merit must be used, and results must be analysed from
multiple points of view.

Visualisation Tools

An efficient way of getting an overall idea of the results is visualisation. Proper visualisation can help
make better comparisons, but can also allow the designer to identify potential patterns in the data.
Nowadays, there is a variety of visualisation tools and techniques, which can represented the data
from different perspectives. The following charts are specifically useful for visualising data for robot
design.

• Design Charts.

– Bubble and scatter charts help to visualise the Pareto front of designs, possible relation-
ships between variables, coverage of the search space and effectiveness of input variable
bounds.

– History charts show the evolution of input/output variables over the iterations of the
optimisation algorithm. These charts are useful during the optimisation experiments and
can help detect convergence.

– Broken constraints chart is usually a pie chart with each slice representing the percentage
of each constraint that is violated over the unfeasible designs. This chart can help identify
what are the limitations of the examined mechanism and its behaviours, and as a result
reevaluate assumptions and decisions in the model (e.g., relax or tighten input variable
bounds or update the model with better components).

– Parallel Coordinates chart or Spaghetti chart helps to analyse high-dimensional input data.
This chart allows the designer to select designs based on design or behaviour parameter
specifications, and can be useful during the final design process (CAD).

• Distribution charts enable the designer to examine the distribution of the input/output variables.
This is another way to evaluate if the algorithm has made an efficient exploration of the search
space, by looking at statistical parameters such as mean, variance and more. These charts are
commonly used in robustness analysis (Section 4.5.6).

• Statistical charts, which enable the designer to identify correlations between variables. These
charts are useful for sensitivity analysis experiments (Section 4.5.2).
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Multivariate Analysis

Multivariate analysis tools can reduce the data size, and help to interpret and identify patterns in the
data. Useful tools for data analysis in robot design are the following.

• Clustering algorithms, which divide the data in clusters with similar characteristics. These
algorithms are useful for identifying patterns in distinct groups of data with similar features.

• Dimensionality reduction methods, for removing redundant dimensions of the data for better
analysis, such as Principal Component Analysis (PCA).

An example of multivariate analysis for robot design can be applying a clustering algorithm
method to the behaviour data. This approach can help to identify different strategies for achieving
a performance objective, which would be otherwise very difficult to detect in high dimensional
spaces. Achieving a performance with various different strategies provides extra versatility in the
design. Some strategies may achieve the same performance objective in better ways under different
circumstances (e.g., more energy efficient or following a shortest route).

Evaluation Criteria

To facilitate the comparison between different designs, and select the best design to be built, a set of
evaluation criteria must be devised based on the applications of the robot.

In cases of experiments with a large set of performance objectives where similar tasks are
performed, objectives can be grouped (e.g., by adding their objective values) into behaviour families
before being compared. This method can result in an easier comparison. Special attention must
be given to the consistency of the units of the objectives that are combined. Moreover, additional
evaluation criteria that were not originally performance objectives can be devised or selected. These
criteria could be another measure of the robot’s performance, which was not a priority during the
optimisation process, but can give additional merit for the final selection.

The previous steps in the post-optimisation analysis were concerned with improving the qualitative
information of the results. Having obtained useful information, the next step is to select the best
design to build. The selection process can be guided by different approaches, which are dependent on
the robot’s applications and the available resources for building it. Examples of selection criteria are:

• design and manufacturing criteria,

• robustness criteria, and

• performance criteria.

Design and manufacturing criteria—some designs or components might be more difficult to obtain
or build due to manufacturing limitations. In addition, even for the most meticulous design studies,
there might be fundamental errors in the model. For example, it might be discovered during the CAD
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Figure 4.9: Robustness analysis identifies solutions that are robust to random variations in the input
variables. In the presented figure two optima exist out of which, one is a global optimum. One can
notice that the global optimum rapidly changes with variations of its input parameters, which means
that uncertainties in the real world could possibly result in a significantly deteriorated performance.
The local optimum has a more flat peak, which makes it more robust, and hence despite the fact that
it has a lower maximum value it might be more preferable in applications where consistency and
robustness are essential.

design that some parts collide with each other. This is a disastrous scenario because the selected
design cannot be built (at least not without modifications that may have an effect on performance).
Fortunately, the Pareto set consists of more designs, and a feasible design to build can be selected at
the cost of some other measure. This choice can be aided with visualisation tools such as the Spaghetti
Chart.

Robustness criteria—is to select the design with the best robustness and performance trade-off. This
means that robustness of the design is preferred over performance (which may still be important). The
selection of the final design should be based on this criterion when the application is critical or there
is a high risk. An example of a critical application is surgical robotics, and a high-risk application can
be dynamic robots that can potentially harm themselves or their environment.

Performance criteria—the driving factor behind the selection is solely performance. In cases where
performance is essential and no major risks or limitations are faced for the manufacturing of the
various mechanical parts, the design with the highest performance can be selected. For example,
industrial arms need to work as fast as possible, because higher performance means higher profits.
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4.5.6 Robustness Analysis

Computational models and manufactured components are not perfect. Tolerance and modelling errors
are quite common, and manufacturing precision comes with a high cost. In addition, when the real
robot is built and experiments are performed, assumptions such as initial conditions can never be met
exactly. Moreover, classical optimisation approaches tend to over-optimise the model, which can
make errors have an even higher impact. As a result, designs that have a great performance in theory,
might end up performing poorly in reality.

A way to mitigate the impact of all the aforementioned is to find designs that are robust to such
cases. These designs remain insensitive to acceptable and expected variations of their operating
environment or input variables with minimal loss of functionality. The way to achieve this is via
Robustness Analysis Optimisation (Ben [7]).

Robustness analysis can: (1) be an extra merit score on the Pareto optimal designs, or (2) be part
of the main optimisation experiment (e.g., robustness is a design criterion of high importance).

1. Merit Score—in the case where robustness serves as an additional merit score it can be applied
on the Pareto front in the following way.

(a) Select a portion (or all if resources allow) of the Pareto front optimal designs.

(b) Identify important parameters that are expected to have uncertainty in the real world.
The selection of these parameters shall be mainly based in: (1) their importance (e.g.,
parameters that have a large impact in the performance of the robot), which is already
quantified from the sensitivity analysis step (see Section 4.5.2), (2) manufacturability
precision of parts, and (3) available resources.

(c) Define stochastic input variables and sampling algorithm. For each examined design
generate random samples (called robust designs) in its close vicinity. From these designs
statistical data are gathered to evaluate the robustness of the examined design.

(d) Define new objectives. Minimise the variance (or another statistical measurement such as
mean, median, maximum or minimum value) of each objective, and use this value as an
extra evaluation criterion for each design.

(e) Define constraints. The constraints set a limit on how much an objective value is allowed
o vary.

(f) Run the optimisation.

2. Performance Objective—if the designer wishes to incorporate robustness as an optimisation
criterion in the optimisation process, then the optimisation experiment can be modified in the
following way.

(a) Define stochastic input variables and sampling algorithm.

(b) Define objectives and constraints.
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(c) For each design generated by the global optimiser, a set of robust designs is sampled from
a predefined distribution, which are also evaluated.

(d) Run the optimisation.

The selection of the distribution that the robust designs are generated from is up to the designer.
For example, a designer can select to model uncertainty with a normal distribution (Gaussian) that has
a given standard deviation and a mean equal to the parameter values of the original design. In this
example, the uncertainty is determined by the standard deviation. Similarly to the previous steps, an
application of this step is presented in the case study in Section 6.6.7.

4.6 Conclusion and Discussion

This section concludes the first part of this thesis. This part presented the main contribution of this
work, which is a framework for the design and behaviour co-optimisation of high-performance mobile
robots, together with a proposed optimisation methodology. The aim of this work is to facilitate the
design process of high-performance mobile robots by investigating the intrinsic relationship between
a design and its behaviours, by using realistic models of the robot’s mechanism and limitations, and
by thoroughly defining its performance objectives.

The first chapter of this part presented an introduction to the field of mathematical optimisation
and its most important concepts and definitions. This included a discussion on the various types of
optimisation problems, their challenges and applications, as well as the various types of algorithms
that exist for addressing these problems. In the following chapter, related work in the field of robot
design optimisation was presented together with a critical evaluation of the field.

The final chapter is dedicated to the main contribution of this thesis. It consists of two parts,
(1) the optimisation framework, and (2) the optimisation methodology. In the latter part an abstract
model of the optimisation architecture is presented and a discussion on the basic concepts of the
proposed design philosophy is presented. In the former part an optimisation methodology is proposed
for performing the optimisation experiments.

In more detail, a two-layer optimisation framework for the design and behaviour co-optimisation
was presented. The overall process is a two-layer multi-objective optimisation scheme in which
the upper layer (the mechanism layer) searches the space of mechanical design parameters, and the
lower layer (the performance tester layer) tests each design against each one of a list of performance
objectives, providing a separate score for each objective. Almost every test is itself an optimisation
problem in which the optimiser searches a space of behaviour parameters looking for the best
behaviour of the given mechanical design to accomplish the given performance objective. This is an
example of mechanism and behaviour co-design.

The novel aspects of this work are that a large repertoire of performance objectives is considered,
many of which conflict with each other, and that a high level of performance is sought, that is close to
the limits of what is physically possible with today’s technology. The latter, in particular, requires
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the use of accurate dynamics simulations based on a detailed dynamic model that accounts for all
relevant physical limitations of the robot, such as speed and force limits, energy losses due to friction
and hysteresis, and so on.

For the purpose of performing the optimisation experiments in a way that can improve the quality
of the results, an optimisation methodology is proposed. Specifically, the methodology consists of
six parts which are: (1) sensitivity analysis to identify the most important design parameters, (2)
preliminary design exploration with DOE techniques to obtain qualitative information from a small
sample of the design space, (3) rough optimisation to obtain rough optimal solutions, (4) refinement
of the Pareto front to improve the precision of the solutions, (5) robustness analysis to obtain designs
that are invariant to the real world imperfections, and (6) post-optimisation analysis to evaluate and
select the best design. Note that the order of the aforementioned steps does not need to be as listed,
and the process can be repeated until the desired results are obtained.

4.6.1 Challenges

The challenges faced with the proposed design philosophy involve both theoretical and practical
aspects, and are summarised below.

1. Multiple and conflicting high-performance objectives—in the analysis of extreme behaviours the
performance objectives are close to the physical limits of the robot’s components. Moreover, the
performance objectives can be of conflicting nature, which results in a Pareto front optimisation
(Section 2.2). Finally, the decision maker must select the design with the most acceptable
performance compromise (between the evaluation criteria).

2. Realistic modelling of the robot’s mechanism and its limitations—requires deep understanding
of real robotic systems, which includes knowledge of dynamics, control theory, mechanical and
electrical engineering, sensing technologies, modelling and simulation, software and more.

3. Low cost of manufacturing and testing—for building realistic models obtaining experimental
data is essential. However, obtaining these data might require test-rigs and also specialised
equipment such as Universal Testing Machines.

4.6.2 Advantages

The proposed optimisation framework and approach could have the following advantages.

1. Faster and less expensive robot production—with a more complete optimisation study, fewer
experimentation and design cycles are required. Modelling software and simulations require
time to be developed; however, this can be compensated by the fact that fewer physical
experiments will be required.

2. Prototype performance closer to design expectations—realistic software can reduce the gap
between simulation and reality.
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3. Design of versatile robots—by optimising for a large repertoire of behaviours, robots can have
a more generalised purpose and might be able to assist humans in various scenarios.

4. Unprecedented performance—experiments in simulation are significantly cheaper in terms of
time and money and have fewer risks. This means that much more complicated experiments
can be executed in simulation, which results in larger search-space exploration that increases
the chances of discovering extreme behaviours. However, a realistic simulation that takes into
account the robot’s limitations is essential in achieving the aforementioned.

5. Robust behaviours—realistic modelling of limitations results in co-evolution of behaviour and
mechanism so the robot can operate to its maximum potential, which is close to its limits, but
not beyond them. Being aware of its own limits, the robot will not try to surpass them, and
hence have less risk of damaging itself.

4.6.3 Limitations

The presented approach may have the following limitations.

1. Development of new software—detailed models require new software to be developed, tested
and documented.

2. Sophisticated optimisation software—multi-objective global optimisation problems are difficult
to solve. This means that sophisticated algorithms are needed to solve them. Open source
software for optimisation exists, but commercial software tends to be more reliable and comes
with better technical support. In addition, efficient tools for post-optimisation analysis are also
required.

3. Large computational cost—as model complexity increases so does the software, which might
require substantial resources in terms of time and memory.

4. Real experiments—to model the various parts of the robot dedicated equipment (e.g., Universal
Testing Machines) might be required, or new test-rigs to be built (which requires a workshop
equipped with various tools and machinery).

4.6.4 Generalisation

This framework and the proposed optimisation methodology were designed for facilitating the design
process of high-performance mobile robots. This approach is based on a systematic and complete
study of a robot’s mechanism, its behaviours and its limitations, which uses mathematical models and
concepts to achieve a maximum physical performance. Even though it was only tested on the design
of a monopod hopping robot, the approach can be applied to other types of robot. The optimisation
approach was designed to be agnostic, and it is not concerned with what happens inside the simulation.
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Specifically, the proposed optimisation framework and methodology can be applied to any design
optimisation problem if the following are provided:

1. a simulated model (could be a very detailed realistic model or even a simple kinematic model)
of the design and its behaviours, and

2. a properly defined set of performance requirements and constraints.

The proposed optimisation process is based on global optimisation techniques that make very few
assumptions about the system to be optimised. This means that the overall process can also be applied
in black box models.

In the next and second part of this thesis the proposed optimisation framework and methodology
are applied for the design optimisation of a one-legged hopping robot. Detailed models of the
mechanism are presented together with a detailed optimisation process. In addition, results are
presented and compared using various post-optimisation techniques.



Part II

Case study: Skippy, a Hopping
Monopedal Robot





Chapter 5

Building a Model: Hardware and
Behaviour

5.1 Introduction

The aim of this part is to demonstrate the effectiveness and power of the proposed optimisation
approach by applying it to the design optimisation of a high-performance monopod robot called
Skippy. This part is divided into two separate experiments with different aims and objectives.
Specifically, the second part is a more advanced and an in-depth continuation study of the first part. In
both experiments the same robot (Skippy) is used, with the same models for its mechanism (except
the model of the springs), behaviour and simulations; however, the optimisation experiments and their
objectives differ.

Skippy is a highly athletic monopedal robot that is able to make high hops and balance skilfully
in 3 D. It is designed to be light and powerful enough to perform impressive athletic feats such as as
vertical hops up to 3 m, which is close to its performance envelope. As mentioned in the previous
chapter, properly defining what the robot is built to achieve can aid the design process so the final
prototype displays a performance close to the mechanism’s true potential.

Skippy is also designed to be robust enough to survive crash-landings from failed hopping
attempts, and it is simple enough (only 2 actuators) to allow a thorough analysis of its mechanism
and to facilitate real experiments. Simplicity and the high-performance requirements make Skippy an
ideal robot for proving the effectiveness of the proposed optimisation approach.

Skippy is part of the Skippy project [33] which aim is to prove the effectiveness of a systematic
and thorough design study by demonstrating unprecedented behaviours. This can be achieved by
utilising the maximum potential of today’s technology and driving it to its limits. Unlike other robots
such as biologically-inspired, Skippy is technology-inspired—this means that Skippy’s design does
not mimic any other biological creature but is driven by the potential of current available technology.
Moreover, Skippy’s simplicity allows a deeper study of legged locomotion as well as balancing
because its one leg forces the robot to continuously strive to balance, while performing any other task.
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The objective of the optimisation study is to discover a single design capable of meeting several
high performance objectives. The robot is required to perform a large repertoire of behaviours, which
are: increasing height vertical hops, decreasing height vertical hops, travelling hops, a somersault,
have a high balancing ability and be energy efficient. The performance objectives were defined in a
series or preliminary experiments, and except the robot’s balancing ability, the rest were set to specific
values (e.g., reach a hopping height of 3 m). The result is a single design with a vector of evaluation
scores that reflect the robot’s ability in each of the desired requirements.

This chapter starts with a literature review on the various existing hopping robots, and a critical
evaluation on their designs, their performance and their design objectives (i.e., what was the purpose
of the design, and what did it eventually achieve).

Thereafter, the proposed approach of Part I is applied for the design and behaviour co-optimisation
of Skippy. The first step is building a model of the system. This part consists of the following sub-parts:
(1) model the mechanism (Section 4.2.2), (2) model the behaviour (Section 4.2.3), (3) define the
performance envelope and the objectives (Section 4.2.4), and define the constraints (behavioural and
mechanical) (Section 4.2.3). Following that is the determining the problem type step (Section 4.3),
and software selection step (Section 4.4), and examples of the simulated models are presented.

Next, a set of preliminary experiments are presented in an existing robot, called Tippy, which
is the predecessor of Skippy. This study demonstrates the balancing algorithm and the balancing
performance measure that will be used on Skippy. The purpose of this section is to justify the
effectiveness of this measure, which is called the Angular Velocity Gain (AVG) (Featherstone [30]).

Over the next sections the optimisation methodology is applied to the design of Skippy. The study
is divided into two parts. In the first part a design that is capable of performing increasing height
vertical hops, decreasing height vertical hops, travelling hops, and demonstrating a high balancing
skill is sought. Due to the multiple demanding performance objectives and the fact that they are of
conflicting nature, makes this problem difficult to solve. Prior to the study presented in the first part
there was no Skippy design capable of achieving all of these objectives. By applying the proposed
approach a set of Pareto optimal Skippy designs capable of achieving all of the aforementioned
objectives was discovered. The results of this study were used as seeds for a second and more
advanced study that included also a somersault, a more realistic model of the springs and more
advanced evaluation criteria for the performance of the designs. For both experiments the proposed
optimisation framework and methodology was applied. Finally, performance comparisons, example
behaviours and various results from the experiments are discussed and presented.

5.2 Related Works: Hopping Robots

Legged locomotion, and specifically hopping robots, have been the topic of interest since the early
1980s when Raibert introduced his 2 D and 3 D balancing and hopping robots [83]. Legged robots are
of particular interest due to the great mobility offered by their legs, which allows them to traverse
cluttered terrains, something that wheeled robots cannot do. A big part of the world of humans
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Figure 5.1: Left: MIT’s cheetah 3 jumping on a 0.76 m desk [9]. Right: Salto-1P performing a
targeted jump [111].

consists of environments full of obstacles, tight spaces, stairs and more, and hence legged robots can
find many uses not only in everyday scenarios, but also exploration, disaster scenarios and more.

Since Raibert’s hopper, several years passed until noticeable progress was observed in legged
locomotion, and specifically in hopping and jumping. Scarfogliero et al. [95] designed a frog-inspired
robot, named Grillo capable of achieving travelling speeds of 1.5 m/s. Their robot had a length of
5 cm and a total mass of 15 grams and used feed-forward signals to achieve its objectives. Li et al.
[62] achieve 0.1 m height and 0.2 m length leaps with an insect-like robot of 0.22 kg. The minitaur
robot [57] achieves a 0.48 m vertical jump using direct drives. Direct drives are more robust than
geared drives, because the latter are susceptible to damage during high-force impacts. Hopping is a
highly dynamic motion that results in large forces, and for this reason also Skippy does not use gears.

Ha et al. [45] co-optimised the design and motion of a single-legged hopping robot for the single
objective of reaching a 1 metre vertical hop from a resting configuration. In their work, link lengths are
optimised using an Evolutionary Algorithm. Saar et al. [92] presented a hopping robot that achieved a
travelling speed of 0.26 m/s. Shamsah et al. [99] achieve hopping on a monopod, a tailed monopod
and a tailed biped. The former achieved a jumping height of about 0.3 m and has a mass fo 2.77 kg.
It uses a 4-bar linkage and a carbon-fibre leaf spring similarly to Skippy, which also uses a 4-bar
linkage, but a glass-fibre leaf spring instead.

Siedel et al. [97] also studied one-legged machines, where a regression model for hopping is
built using experimental data. Their miniature hopping robot has a length of 0.25 m and hops onto
obstacles of 2 cm height. In this case, even though their robot was designed for hopping, it appears in
their work that its hopping performance was only evaluated in the real robot and was not part of the
design process. Batts, Kim and Yamane [5] present a monopedal hopping robot capable of continuous
3 D hopping. Their robot has one motor, two springs in parallel and uses Raibert’s [83] hopping and
balancing controller; however, it must continuously hop to maintain its balance.
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Verstraten et al. [107] also achieve low hopping cycles of 2.4 cm with a 2.7 kg tethered robot.
Bledt et al. [9] use QP to find feed-forward behaviours for achieving a 0.76 m hop on and off a
surface with the Cheetah 3 robot. Grimminger et al. [41] use QP to discover a feed-forward signal for
achieving a 0.65 m jump on a 2.2 kg 3 D printed quadruped. Similarly Katz et al. [56] also use QP for
behaviour optimisation to achieve a 0.3 m back-flip with a feed-forward signal on the mini-cheetah.
Their robot weights 9 kg and the trajectory for the back-flip is generated offline. Also, their robot can
achieve gaits of speeds up to 2.45 m/s. These works do not state if any of the displayed behaviours
were taken into account during the design process of their robots.

In the work of Yim et al. [111], high-performance hopping and balancing ability is demonstrated
with the same angular momentum-based balancing algorithm (Featherstone [31]) that Skippy will use.
The performance of their miniature hopping robot (Salto-1P) is measured via experimentation. With
a weight of 0.11 kg their robot can achieve a hopping height of 1.25 m. Thanks to precise angular
momentum control, the robot displays a high jumping precision, with an error standard deviation of
1.6 cm in targeted jumps. .

This section presented several robots of various sizes and masses that demonstrate impressive
hopping/jumping skills; however, most of the presented behaviours were either the result of exper-
imental tuning or behaviour-only optimisation. These approaches ignore the relationship between
the robot’s performance objectives and its design, and the final performance is the result of design
choices or optimisation experiments that were not aimed to achieve the mechanism’s true potential in
the examined behaviours. This means that the presented mechanisms have not been properly explored
for optimality in the tasks that they are required to do.

Furthermore, the presented studies optimise for a small set or even only one desired behaviour.
However, Skippy is optimised for a large repertoire of behaviours with the aim of allowing it to travel,
hop at different heights, perform complicated acrobatic motions such as a 2-metre triple somersault,
as well as to be a skilled balancing machine. To have practical use in the lives of humans, robots must
display a plethora of behaviours, which must be taken into account during their design process.

Finally, the majority of the presented legged robots are relatively light robots (less than 10 kg).
Even though the practical use of small robots is limited, due to their small size and mass these robots
are more robust in crash landings, easier to control, experiment and build, and more agile, which
means that they are cheaper to maintain and build. Experimenting in relatively smalls robots makes
highly dynamic motions easier to achieve, and with less risk. This can help build the foundations for
developing and achieving the same motions for heavier and bigger robots with higher potential and
usability. Skippy is also designed to be as lightweight as possible, with the first prototype having an
estimated mass of 3 kg.
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Figure 5.2: A schematic diagram showing the relevant parts of Skippy. The batteries, electronics and
crossbar drive components have been omitted. The diagram is not to scale, and does not show the
parts in their true shape.

5.3 Building a Model

In this section the model of Skippy is presented. Following the approach of Section 4.2, the mechanical
model of the robot is first defined. Its kinematic and dynamic model are defined, and its various
components and limitations are listed. In addition, various design choices are justified and some
details about the realistic models are presented. The modelling of the behaviour is explained together
with the behavioural constraints, assumptions and challenges of the modelling process.

The scientific objective of the Skippy project is to test the hypothesis that the gap between the
relatively poor physical performance of legged robots and the much better performance suggested
by the specifications of the available component parts is mainly due to poor design. To this end,
the Skippy project sets out to design, build and demonstrate a high-performance robot that is so
mechanically simple that it is feasible to design it more thoroughly in order to achieve higher physical
performance. This is why Skippy has only one leg (simplicity), only two actuators (simplicity), and
aims to hop to a height of 3 m, make high somersaults, and exhibit other similar behaviours (high
performance).

5.3.1 Hardware

Figure 5.2 shows a schematic diagram of Skippy’s mechanism, springs and main motor. Certain parts
have been omitted, including the crossbar motor and transmission. The crossbar itself rotates about
the long axis of the torso, and is used to balance and steer the robot in 3 D. (See Azad [3] and Azad
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Figure 5.3: Torques at the hip and ankle joints push Skippy’s foot into the ground in two different
directions.

and Featherstone [4] for a description of how this is done, and [33] for animations of 3 D balancing
and steering.) For the 2 D study in this thesis the crossbar is treated as being part of the torso. Apart
from the crossbar, the rest of the mechanism is planar. A more detailed diagram of Skippy, showing
most of its kinematic parameters, appears in Figure 5.4.

The main motor is responsible for hopping and for balancing in the robot’s sagittal plane. Its
output shaft is connected directly (i.e., without any intervening gear) to a ring screw rod. The ring
screw [32] is a recently invented mechanical component that performs the same function as a ball
screw but is able to operate at much higher speeds. The main motor operates the lever via the ring
screw and main spring; and the lever in turn operates the leg via the 4-bar linkage, which is the hip
joint. Finally, the leg is connected to the foot via a spring-loaded revolute joint at the ankle (see
Section 5.4.1). The need for an ankle joint was established early in the Skippy project as the solution
to the following problem: Skippy must have a specific linear and angular momentum at lift-off if
it is to perform a hop of a given height and travel, and land on its foot at the end, and this must be
accomplished using only one actuator. For this to be possible, the actuator must be able to influence
both the magnitude and the direction of the ground force (the force transmitted from the foot to the
ground, which is the opposite of the ground reaction force). As shown in Figure 5.3, torques at the
hip and ankle joints produce ground forces in different directions. If the ankle joint is removed then
the hip actuator can influence only the magnitude of the ground force, which is not enough. If both
joints are present and actuated then Skippy has full control over the magnitude and direction of the
ground force, and can therefore make any kind of hop. If, instead, both joints are present but only the
hip joint is actuated while the ankle joint is spring-loaded, then varying the hip joint torque affects
both the magnitude and direction of the ground force, and some of our earliest simulation experiments
(unpublished) showed that this was enough to allow Skippy to perform a large repertoire of hops.
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Bodies of the robot Joint variables of the robot
B1 to B3—fictitious massless bodies that
give the foot the freedom to lift off the
ground and roll

q1 +q3—define the x coordinate of the
toe-ground contact point

B4—foot q2—y coordinate of the toe-ground con-
tact point

B5—leg q4—foot angle (combines with q3 to
make a rolling contact)

B6—lever q5—ankle angle
B7—torso q6—leg-lever angle
B8—follower lever-torso angle
B9—rocker (carries the main motor and
includes the screw rod)

q8—torso-follower angle

B10—coupler (includes the ring screw
nut and main spring)

q9—torso-rocker angle

q10—nut displacement (towards motor)

Table 5.1: Left column: the list of bodies in Skippy’s model; right column: the list of joints in
Skippy’s model.

Kinematic and Dynamic Model

A more detailed kinematic model of Skippy is presented in Figure 5.4. As explained earlier, the real
robot will also have a second motor to control the crossbar, which is used to balance and steer the
robot in 3 D (see Section 5.5). Because this motor does not need to be actuated during the behaviours
examined in this thesis, the model includes only their masses which are added to the torso. Table 5.2
contains some of Skippy’s kinematic and dynamic parameters, as well as kinematic limits. In addition
to these, there are more parameters that are presented in the rest of this section. These parameters are
coupled with other components and are defined with them (e.g., the thrust bearing force limit of the
ring screw bearings, or the kinematic parameters of the 4-bar linkage).

Table 5.1 lists the bodies and joints of Skippy’s model, together with their description. The
independent joint variables are q1, q2, q4, q5 and q10. q4 controls q3 (rolling contact with ground),
and q10 controls q6, q7, q8 and q9 (4-bar linkage and rocker). Joints 1 and 2 come into play when
the foot leaves the ground or when the foot slips while rolling. As the simulations assume rolling
without slipping, it follows that q1 = q2 = 0 at all times. The robot is folded both in the open-loop
zero position (all variables zero—see Figure 5.4) and the closed-loop zero position (all independent
variables zero), with the foot vertical and the leg and torso shafts horizontal.

4-bar Linkage

The 4-bar linkage serves two purposes in Skippy. First, it amplifies the motion of the lever, so that the
lever needs to turn through only 90◦ in order to make the leg turn through 180◦, which is its full range
of motion. Second, it creates a nonlinear relationship between the lever angle and the leg angle such
that the leg can exert large forces at low speeds when the robot is folded (as shown in Figure 5.2), and
less large forces at progressively higher speeds as the robot unfolds. The analysis does not consider
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Name Description Value LB UB
Kinematic Parameters and Limits

rtoe radius of toe 0.03
d2toe length of foot (body 4) ∼ 0.22 0.26
p2x x coordinate of P2 (ankle) relative to P1 0.55
p2y y coordinate of P2 (ankle) relative to P1 0.05
A3 angle of 4-bar segment AB within torso 0.35
d05 lever length ∼ 0.1 0.11
A5 lever angle 0.45
p6x x coordinate of rocker joint in torso 0.4
p6y y coordinate of rocker joint in torso 0.07

Dynamic Parameters
foot_m mass of foot (body 4) 0.25
foot_cx foot centre of mass x coordinate 0
foot_cy foot centre of mass y coordinate 0.11
foot_rog foot radius of gyration 0.09
leg_m mass of leg (body 5) 0.35
leg_cx leg centre of mass x coordinate -0.25
leg_cy leg centre of mass y coordinate -0.02
leg_rog leg radius of gyration 0.22
lever_m mass of lever (body 6) 0.25
lever_cx lever centre of mass x coordinate 0
lever_cy lever centre of mass y coordinate 0.1
lever_rog lever radius of gyration 0.08
torso_m mass of torso+, rocker, nut (bodies 7, 9, 10) 2
torso_cx torso+ centre of mass x coordinate ∼ 0.36 0.44
torso_cy torso+ centre of mass y coordinate 0.025
torso_rog torso radius of gyration 0.18

Table 5.2: List of 25 dynamic and kinematic parameters of Skippy’s mechanism (the list does not
contain the 4-bar linkage parameters). Parameters with tilde in their Value field are optimised, and
hence do not have a fixed value. LB and UB stand for lower and upper bounds respectively. Fields
LB and UB are empty for constants. Lengths are in metres, masses in kilograms and angles in radians.
The symbol ‘torso+’ means the torso plus the crossbar, treated as a single rigid body.

Name Description Value
bar4_a length of 4-bar segment (in torso) 0.04835
bar4_b length of 4-bar segment (in lever, body 6) 0.122
bar4_c length of 4-bar segment (in leg) 0.04988
bar4_d length of 4-bar segment (follower, body 8) 0.1179
bar4_phi CD offset angle at motion limits 0.1301
bar4_Bmin 4-bar angle at maximum stretch 0.3699
bar4_Bmax 4-bar angle at maximum fold 1.9407

Table 5.3: List of kinematic parameters of the 4-bar linkage. Lengths are metre and angles in radians.
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Hip end-stop details

Figure 5.4: Top diagram showing Skippy in its open-loop zero position (every joint variable equal to
zero), plus details of the hip end stop and ankle spring. In Skippy’s closed-loop zero position (not
shown), P4’ coincides with P4, P5’ with P5, the lever is rotated slightly clockwise, but the leg is still
parallel to the torso (q6+q7=0). Note that Skippy is pressing into its hip end stop in its zero position.
Parts are not drawn in their true shapes.
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Figure 5.5: Kinematic model of the 4-bar linkage, showing a range of configurations. Parameters a, b,
c, d, and φ are corresponding parameters bar4_a, bar4_b, bar4_c, bar4_d and bar4_phi in Table 5.3.
bar4_Bmin and bar4_Bmin are the minimum and maximum value of input angle θ , which span is 90◦.

the lever that connects the 4-bar with the main motor, which is optimised in the final optimisation
experiment presented in Section 6.6.

Table 5.3 shows the kinematic parameters of the 4-bar linkage which is accommodated by
Figure 5.5 to describe the mechanism. The kinematic parameters of the 4-bar linkage were obtained
via a separate optimisation process, where the 4-bar was optimised in isolation, and is not described
in this thesis, nor has not been published elsewhere. This optimisation study was performed under
the assumption that the 4-bar design would serve as good initial guess, and could be the subject of
subsequent optimisation studies, that unfortunately time did not allow to perform.

Figure 5.5 shows the kinematic model of the 4-bar linkage in various configurations from a fully
folded to a fully extended configuration. The segment AB is fixed in the torso; CD is fixed in the leg;
BC is the bottom half of the lever; and AD is the counter-lever. The lever swings through an angle θ

as the leg swings through a full 180◦ from C0D0 to C1D1. g0 is the perpendicular distance from C to
AD, and g1 is the lever arm of the counter-lever about the point C.

Motor

The main motor was chosen to be a Maxon DCX32L [70] for the following reasons. First, we chose
Maxon because it provides detailed data on its motors, including the parameters needed by a thermal
model of the motor’s windings and housing. Skippy is so energetic that it could easily overheat this
motor, so a thermal model (supplemented with temperature sensors) is necessary for safe operation
of the robot. We then chose the most suitable brushed DC motor from Maxon’s range; that is, the
lightest motor that could deliver sufficient power and torque.

There are two reasons for preferring a brushed DC motor over a brushless one. First, brushless
motors get their advantage over brushed motors by operating at higher speeds. Although the ring
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Characteristics
Kτ Torque Constant [mNm/A] 27.3
Sτ Stall torque [mNm] 1980
R25 Winding Resistance at 25◦C [Ω] 0.331
L Terminal inductance [mH] 0.052
Inl No load current [mA] 164
ωmax Max Speed [rpm] 11,300
τ Mechanical time constant [ms] 3.24
Ir Rotor inertia [gcm2] 72.8
m Weight [kg] 0.32
Vnom Nominal Voltage [V] 24
Tnom Nominal torque [Nm] 0.108
Istall Stall current [A] 72.5

Thermal Data
Rtha Thermal resistance housing-ambient [K/W] 7.28
Rtwh Thermal resistance winding-housing [K/W] 2.3
Tcw Thermal time constant of coil [s] 42.2
Tcm Thermal time constant of housing [s] 837

Table 5.4: Table with Maxon’s DCX32L 70 W 24 V [70] motor data.

screw can cope with the extra speed, the consequence of a main motor running at higher speed is
that we must either reduce the pitch of the ring screw or increase the travel of the nut, or do both.
Unfortunately, we are constrained by a practical lower limit of 4 mm on the ring screw pitch, which
means that we would have to increase the travel of the nut; but this would require several parts of
Skippy to be larger, and therefore heavier, which negates the advantage of a brushless motor. A further
problem with the higher speed is that it exceeds the resonant frequency of the screw rod. The second
reason is that we found a good motor driver for brushed DC motors: the Pololu G2 High-Power Motor
Driver 24v21 [81]. Good drives exist also for brushless DC motors [26], but are aimed at much more
powerful motors.

Table 5.4 shows the parameters of the Maxon DCX32L motor that Skippy uses. These parameters
are used to build the electrical, the mechanical and the thermal model of the motor. Taking into
account the dynamics of the motor in the model, reduces the gap between simulation and reality, and
only behaviours that can be tracked by the motor (e.g., do not surpass the motor’s limits) are explored.
Because a realistic model of the motor is used, the input to the plant is a voltage.

Ring Screw

A ring screw is a mechanism that achieves an almost frictionless motion between a nut and a screw
rod. It performs the same function as a ball screw but at much higher speeds [32]. For this reason it
can be directly coupled to the motor shaft, and avoid the use of gears which are susceptible to damage
during large impacts. The ring screw is also largely responsible for transmitting the explosive power
required for hopping, due its fast speed. The parameters of the ring screw are presented in Table 5.5,
and details on its model, which is not presented in this thesis can be found in [32].
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Name Description Value
pitch ring screw rod pitch [mm/rev] 4.5
effi ring screw efficiency 0.9
thrust ring screw maximum (pulling) thrust [N] 1,500
stroke ring screw stroke (max nut movement) [m] 0.15
Irsr ring screw rod and nut inertia [gcm2] 13.6
wmax ring screw speed limit [rpm] 9,000

Table 5.5: Ring screw parameters.

Figure 5.6: Image of the ring screw rod, nut and ball bearings. The rings are placed in such way, that
a theoretically perfect rolling contact between the rod and each ring is achieved, resulting in an almost
frictionless sliding motion.

A prototype has been tested at 16,500 rpm [49], which is approximately four times the speed
limit for a comparable ball screw. However, the speed limit of 9,000 rpm was set in the design study
in order to avoid a resonance in the screw rod. The motor’s mechanical speed limit is only a little
beyond that at 11,300 rpm. Skippy needs this much speed in order to meet its performance objectives.
Essentially, a ring screw consists of a screw rod and a nut, and the nut contains rotating rings that
make rolling contact with the rod as it moves, resulting in a nearly frictionless movement between the
rod and nut. In Skippy, the main motor spins the rod, and the nut travels back and forth. A picture of
the ring screw appears in Figure 5.6.

Springs

The two springs are crucial to the performance of Skippy, and so they have been the subject of much
attention. In the real robot, both springs will be fibreglass leaf springs of constant thickness and
varying width, which are curved in a circular arc in their rest state. Their nominal behaviour can be
characterised accurately with three parameters: rest length, arc angle at rest, and force to compress
by 25%. (In reality, both springs operate mainly in compression, despite the appearance in Figure
5.2 that the main spring operates mainly in tension. The figure does not show the true mechanical
arrangement.) A fourth parameter, the force hysteresis, models the energy loss in real springs.

These models were built after a series of stress-strain tests we performed on a batch of real
springs (see Figure 5.8). The black line in the right-hand graph in Figure 5.7 is the profile of a real
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Figure 5.7: Top: A family of force profiles for tapered leaf springs with different arc angles, normalised
for unit length and unit compression force at 25% compression. Bottom: Accuracy of model fit to the
measured force profile of a sample fibreglass leaf spring.
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Figure 5.8: Photograph of a non-tapered patch of fibreglass leaf springs, during stress-strain experi-
ments in a Tensile Strength Machine. The data obtained from these experiments are used for building
a realistic model of the springs.

spring measured in a Tensile Testing Machine (see Figure 5.8). These experiments included cyclic
compression and decompression as well as compression until failure. In the former we found out that
the spring’s yielding point is approximately at 30% of their rest length. For this reason we added
an extra 5% for safety and place the end stops at 25% of their lengths to prevent them from over
compressing.

To give an idea of how these parameters work, Figure 5.7 (left) shows a family of force profile
curves in which both the rest length and the compression force parameters have been normalised
to 1, and the arc angle varies from 0.5 to 2 rad. Varying the rest length scales the curves in the x
direction; varying the compression force parameter scales them in the y direction; and varying the arc
angle alters the regressiveness of the force profile (the degree to which the stiffness decreases with
increasing compression). Skippy’s springs need to be regressive for reasons explained below. To give
an idea of how accurately this model fits the behaviour of real fibreglass springs, Figure 5.7 (right)
shows the model curve underneath measured data from a test sample of real springs. Observe that the
model reproduces accurately both the nominal force profile and the force hysteresis of the real spring.

The choice of fibreglass leaf springs was driven by the following criteria: (1) we require a high
elastic energy to weight ratio, (2) spring behaviour must be highly repeatable, and (3) the force profile
must be regressive. Item 1 rules out materials like spring steel, while item 2 rules out rubber. We need
repeatability because one of the intended uses of Skippy is to study how well it can learn difficult
acrobatic manoeuvres by physical practice (i.e., the same way that a human acrobat would learn them).
Regressiveness offers two advantages over a linear or progressive spring: greater stored elastic energy
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Figure 5.9: Geometry of the tapered fibreglass leaf spring. Top: side view; bottom: top view. The
circular end points in the top figure, are the corresponding rectangular points in the bottom figure,
which represent attachment points.

Name Description Value LB UB
Ankle spring parameters

as_L ankle spring rest length [m] ∼ 0.14 0.26
as_Phi ankle spring arc angle [rad] ∼ 0.5 2
as_F25 force to compress ankle spring 25% [N] ∼ 950 1250
as_fh force hysteresis of ankle spring 5%
aslv_len ankle spring lever length [m] 0.04
aslv_ang foot-to-ankle-lever angle at rest [rad] 2.1525
q5r ankle joint rest angle [rad] −0.3
as_alpha ankle spring tapering parameter 0.3%

Main spring parameters
ms_L main spring rest length [m] ∼ 0.14 0.26
ms_Phi main spring arc angle [rad] ∼ 0.5 2
ms_F25 force to compress main spring 25% [N] ∼ 950 1250
ms_fh force hysteresis of main spring 5%
ms_alpha mainspring tapering parameter 0.3%

Table 5.6: List of leaf spring model and related parameters. Parameters with tilda in their ‘Value’
field do not have a fixed value and are optimised. LB and UB stand for lower and upper bound in the
optimisation studies.
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E-glass property minimum value maximum value
density [Mg m−3] 2.55 2.6
bulk modulus [GPa] 43 50
Young’s modulus [GPa] 72 85
Poisson’s ratio 0.21 0.23
compressive strength [MPa] 4000 5000
tensile strength [MPa] 1950 2050
elastic limit [MPa] 2750 2875

Table 5.7: List of relevant properties of the E-glass used for making the fibreglass springs.

Ankle end stop
q5es ankle end stop engagement angle [rad] 0.8858
aes_sc ankle end stop specified compression [m] 0.05
aes_tsc ankle end stop torque at spec comp [Nm] 12
aes_rtc ankle end stop recovery time [s] 0.02

Hip end stop
q67es hip end stop engagement position [rad] 0.14
hes_sc hip end stop specified compression [m] 0.18
hes_tsc hip end stop torque at specified comp [Nm] 100
hes_rtc hip end stop recovery time constant [s] 0.007

Table 5.8: List of end stop parameters.

for a given stroke and maximum force, and greater stiffness at low force levels. Thus, regressive
springs give Skippy enough energy to hop high, while still being stiff enough at low force levels to let
Skippy balance quickly and accurately.

Figure 5.9 shows the shape of the spring. The tapered leaf spring is modelled as a strip of constant
thickness and varying width that is wrapped around a (large diameter) cylinder so as to have a curved
shape in its rest state. The tapering is such that the ends are 30% as wide as the middle. The spring’s
force is obtained by modelling the spring as a chain of 21 equal-length segments connected by linear
torsional springs having stiffnesses propositional to segment width. A spline curve is then fitted to the
data from this model, and the spline curve is used in the simulations. Finally, the springs are made
from E-type glass. A few relevant properties of the material are presented in Table 5.7.

End Stops

Skippy has a hip and an ankle end-stop. Their purpose is to: (1) prevent over-compression of the
ankle and hip springs (so they do not go beyond their yielding points), and (2) prevent self-collision.
They are modelled as nonlinear viscoelastic progressive springs and dampers by Equation 5.1 and the
parameters in Table 5.8).

Parameters ‘q5es’ and ‘q67es’ represent the engagement position for the ankle and hip end stop,
respectively, and they are the result of preliminary optimisation studies that are not presented in
this thesis. Skippy is expected to hit its end-stops during operation; thus, their activation points and
behaviours must be taken into account. Based on the compression and the compression rate of the
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Name Description Value
Vmax battery supply voltage [V] 31
Imax motor driver current limit [A] 45
IMUsat IMU saturation limit [g] 16

Table 5.9: List of power supply and sensing limitations.

end-stop, an output force or torque is produced. The output is calculated according to the following
formula:

F = Kx2 +Dxẋ. (5.1)

F is the output torque or force, x is the displacement in metres or radians, and ẋ is the compression
rate. The gains K and D are calculated as follows:

K = Fsd−2

D = 2tcFsd−2.
(5.2)

Parameters d, Fs and tc are the end stop’s specified compression, the torque at specified compression,
and recovery time constant respectively (see Table 5.8).

Power Supply and Sensing

Skippy will have an 8-cell LiPo battery that has a nominal voltage of 29.6 V but a measured voltage
of 31.0 V, which powers the motors and all electronics. To control the Maxon DCX32L [70] brushed
motor the Pololu G2 High-Power Motor Driver 24v21 [81] is used, which has an instantaneous current
limit of 50 A. In the simulations this limit is set at 45 A, because it is not a significant limiting factor
on the robot’s performance.

In hopping large shocks occur either during normal operation or crash landings, which can cause
saturation of the IMU’s accelerometer. The saturation limit of the Vectornav VN-100 [106] is 16 g. A
result of saturation is that it confuses the IMU’s Kalman filter, that is used for state estimation. To
avoid this during normal operation a behavioural constraint is imposed as a limit to the maximum
vertical ground reaction force during a behaviour (see Section 5.3.2).

Hardware Limitations and Limits

As mentioned in Section 4.2.2, it is reasonable to understand the hardware limitations and define
them together with the models. Awareness of the robot’s limitations can push behaviours towards the
hardware’s maximum potential in a safe way. To be used by the optimiser, these limits are converted
to optimisation constraints. The constraints are all enforced, either directly in the dynamics simulation
or as explicit constraints in the optimisation process, and they are the following.

1. Voltage Limit—set at 31 V based on the chosen batteries.
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2. Current Limit—set at 45 A, maximum allowed current of the Pololu G2 High-Power Motor
Driver 24v21 motor driver [81] is 50 A. Current is adjusted by the simulation model of the
motor by reducing the commanded input voltage to the motor.

3. Ring Screw Speed Limit—set at 9,000 rpm. Even though the motor’s limit is at 11,300 rpm,
this limit is set to avoid resonance of the screw rod (Section 5.3.1).

4. IMU Saturation Limit—the normal component of ground reaction force during the motion
must be less than ‘fymax’ (see Table 5.10). This constraint rules out behaviours in which the
robot hits one of its end stops too hard. Such behaviours risk saturating the accelerometer in the
VN-100 IMU [106], which is 16 g.

5. Thrust-bearings Force Limit—the pulling force on the lever during the motion must be less
than ‘thrust’ (see Table 5.5). This limit is imposed by the thrust bearings holding the ring screw
rod.

6. Kinematic Constraints

• Nut Position Limit—the nut position variable (q10) must be less than variable ‘stroke’ in
Table 5.5 at all times during a behaviour. This constraint enforces a mechanical limit in
the robot’s mechanism.

• Leg and Hip Opening Limit—the leg opening angle (q6 +q7, see Figure 5.4) must be
less than ‘q67max’ (see Table 5.2) at lift-off. This constraint rules out behaviours in which
the robot opens out too much.

These constraints define the operational range of the robot, or in other words the limits of
physically valid behaviours, and they are all modelled as inequality constraints and apply for the
entire behaviour. Constraint number 1 is imposed as bound on the input voltage variables. Constraints
2–3 are implemented in the simulation via the dynamics of the system. Finally constraints 4–6 are
handled by the optimiser. They can be violated during a behaviour, and it is the optimiser’s task to
find valid behaviours that respect them.

5.3.2 Behaviour

This study is concerned only with Skippy’s behaviour during its stance phase, which starts from the
moment the foot touches the ground until the moment it lifts off. This is sufficient for our purposes
because none of the performance objectives are concerned with Skippy’s behaviour during its flight
phase, which will be the task of a flight controller, that is not yet designed. The simulation starts after
a plastic collision of the foot with the ground, and thereafter a feed-forward signal is applied to the
motor until the foot lifts off the ground.

The set of parameters that describe Skippy’s behaviour is listed in Table 5.10. As proposed in
Section 4.2.3, these parameters can be classified into three groups:
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Name Description Value LB UB
Initial State Parameters

q4i initial foot angle (measured from vertical) ∼ -0.6 -0.05
q10i initial nut position (0=hip fully folded) ∼ 0.01 0.08

vcm0x x coord CoM velocity before landing *
vcm0y y coord CoM velocity before landing *
hcm0 angular momentum at CoM before landing 0

Outcome Parameters
vcm1x x coord CoM velocity at lift-off *
vcm1y y coord CoM velocity at lift-off *
hcm1 angular momentum at CoM at lift-off *
fxmax max horizontal GRF at lift-off 15
fymax max vertical GRF during motion 350
q4min min foot angle during motion -1.4

q67max max hip angle at lift-off 2.2
p1hmin min height of P1 during motion 0.07

Input Parameters
t1 duration of first Vin ramp ∼ 0.01 0.08
t2 duration of second Vin ramp ∼ 0.01 0.08
t3 duration of third Vin ramp ∼ 0.01 0.08
t4 duration of fourth Vin ramp ∼ 0.01 0.08
t5 duration of fifth Vin ramp ∼ 0.01 0.08
t6 duration of sixth Vin ramp ∼ 0.01 0.08
t7 duration of final Vin ramp ∼ 0.01 0.1
V1 relative voltage at time t1 ∼ -1 1
V2 relative voltage at time t1+t2 ∼ -1 1
V3 relative voltage at time t1+t2+t3 ∼ -1 1
V4 relative voltage at time t1+...+t4 ∼ -1 1
V5 relative voltage at time t1+...+t5 ∼ -1 1
V6 relative voltage at time t1+...+t6 ∼ -1 1

Table 5.10: List of 26 behaviour parameters that define Skippy’s behaviour. Fields LB (lower bound)
and UB (upper bound) are empty for constants. Time is in seconds, lengths in metres and angles in
radians. Relative voltages are multiplied by Vmax (in Table 5.9) to obtain actual values. Initial and
final conditions of the CoM (with ‘*’ in their Value field) depend on the performance objective.

• initial parameters, which describe the state of the robot at the beginning of the stance phase;

• input parameters, which describe the voltage signal to the motor during the course of the stance
phase; and

• outcome parameters, which describe things that must be true at the end of the stance phase, or
which must be true during the whole of the stance phase.

The initial parameters describe certain key position variables and the velocity state of the robot
just before the foot hits the ground. These parameters, together with a set of assumptions about the
initial state of the robot, are sufficient to define the initial value of every state variable in the simulation
(see Section 5.4.1 for details).

The input parameters describe the actions that the robot can take during a behaviour. They are the
controlled variables and can be positions, torques, volts or any signal we wish to control. Because a
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realistic model of a brushed DC motor is used, the input is a voltage signal, which is modelled as a
sequence of seven ramps. After experimentation with fewer ramps, we found that six ramps provided
substantially better results than five, but seven provided only a modest improvement over six. So we
stopped at seven ramps on the assumption that we had reached the point of diminishing returns. Each
voltage profile starts and ends with zero volts and is parametrized with six voltage values in the range
of [-31 V, 31 V], and seven ramp durations restricted to the range of [0.01 s, 0.08 s].

The initial state and input parameters are sent to the simulator, where they are used to set up the
simulation; but the outcome parameters are handled by the optimiser. Each of these parameters defines
either a constraint on the actual outcome of a simulation run, or else an objective; and their roles vary
from one performance test to the next. In all cases, they refer either to something that must be true at
the end of the simulation, or to something that must be true throughout the simulation. For example, in
Table 5.10 the parameter ‘vcm1y’ specifies the vertical component of centre-of-mass (CoM) velocity
at the end of the simulation, which determines the height of the subsequent hop; whereas ‘fymax’ sets
an upper limit to the vertical ground-reaction force at all times during the simulation. The purpose of
this parameter is to discourage behaviours that rely on hitting an end stop hard, which risks saturating
the IMU’s accelerometer. Another parameter of this kind is ‘p1hmin’ (Table 5.10), which disallows
behaviours in which the robot’s hip hits the ground.

In every performance test, all of the input parameters and the two initial parameters ‘q4i’ and
‘q10’ (which define the configuration of the robot at landing) are treated as independent optimisation
variables, and the rest are fixed. Where a specific value is given for a fixed parameter in the table, it
means that the parameter value is the same in every test. Where no value is given, it means that the
value depends on the test.

Behaviour Constraints

Behaviour constrains define how the robot should achieve its objectives as well as what is considered
an acceptable outcome for a behaviour (Section 4.2.3).

1. Slip Constraint—the magnitude of the tangential component of ground reaction force at lift-off
must be less than ‘fxmax’. This constraint rules out behaviours which, if executed by a real
robot, would cause too much slipping of the foot during the last few milliseconds before lift-off.
We decided to not use a friction cone constraint, because it will almost always be violated in
the final milliseconds before lift-off.

2. Behaviour Time Limit—the sum of the first six voltage ramp durations must be less than 0.3 s.

3. Ramp Effectiveness—the last ramp must start at least 10 ms before lift-off. Its purpose was to
ensure that all seven ramps had an effect on the behaviour. This constraint was not active in the
experiments presented in Section 6.6.
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4. 4-bar and Ground Collision Limit—the computed height of the point P1 in the mechanism
(see Figure 5.4) must be greater than ‘p1hmin’ (Table 5.10) at all times during the motion. This
constraint rules out behaviours in which the bottom of the 4-bar linkage hits the ground.

5. Foot and Ground Collision Limit—the foot angle during the motion must be greater than
‘q4min’ (see Table 5.10). This constraint rules out behaviours in which the robot’s ankle touches
the ground.

6. Performance Objective Constraints

• Angular Momentum—the angular momentum of the robot about its CoM at lift-off must
equal ‘hcm1’.

• Vertical CoM Velocity—the vertical component of CoM velocity at lift-off must equal
‘vcm1y’.

• Horizontal CoM Velocity—the horizontal component of CoM velocity at lift-off must
equal ‘vcm1x’.

Constraints 1–5 are translated into inequality constraints and are all handled by the optimisation
algorithm. This means that any value below these limits produces a valid behaviour. For example,
any behaviour that lasts less that 0.3 s is acceptable. The ‘Performance Objective Constraints’ are
modelled as equality constraints. Depending on the performance objective, these constraints might
not apply or be allowed some slack. For example, in vertical hops the robot must have zero angular
momentum. However, this is a very strict constraint and a small relaxation (such as allowing an
angular momentum error of ±0.2kgm2s−1) leads to more useful results, without a significant loss of
performance or violation of the design objectives.

5.3.3 Assumptions

In this section the assumptions in the modelling of Skippy’s mechanism and its behaviours are
presented. As explained in Section 4.2.1 assumptions are an important part of the modelling process
and can lead to simplified and computationally cheaper to execute models. The assumptions taken in
modelling of Skippy and its behaviours are the following.

1. 2 D dynamics—although Skippy will be a robot able to balance and hop fully autonomously in
3 D, the design study in this thesis considers only behaviours in a plane (the robot’s sagittal
plane). The justification for this simplification is that hopping is mostly a planar activity, and
a planar study is sufficient to capture all of the main energy flows during it. Even after this
simplification, the robot still has almost 80 design parameters, of which only a few of the most
influential were chosen for optimisation. Specifically, in the first study presented in Section 6.5,
eight design parameters were optimised, and in the final study of Section 6.6 seven parameters
were varied. These parameters were selected according to the results of preliminary experiments
and a sensitivity analysis (see Section 6.6.2).
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2. Initial state-parameters.

• It is assumed that both the main spring and the ankle spring are at their rest lengths before
the robot lands. This implies that the ankle joint is at its rest angle.

• It is assumed that all of the robot’s joint velocities are zero before the landing, but the
robot as a whole is moving as described by the initial-value parameters ‘vcm0x’, ‘vcm0y’
and ‘hcm0’ (see Table 5.10).

3. A perfectly plastic collision without slipping occurs when the foot touches the ground.

4. The robot is constrained to not slip during the stance phase. In reality, Skippy will slip; however,
excessive slipping is prevented with constraint 1 in Section 5.3.2.

5. The environment is horizontal, flat and empty.

6. Motor temperature—at the beginning of each stance phase is set to 25◦C.

7. A flight-phase controller that can bring Skippy into the desired initial condition for the next hop
can be designed.

5.3.4 Conclusion

Tables 5.2 – 5.10 list the complete set of the 78 parameters that describe Skippy’s hardware and
limitations, and 26 parameters for its behaviour. To understand the kinematic parameters, see Figure
5.4. Observe that in addition to the usual kinematic and inertia parameters that one would expect to
see in any dynamic model of a robot, these tables also list spring and end stop parameters, efficiencies
of important parts (i.e., ring screw transmission mechanism), as well as limits on motor voltage,
current and speed, and ring screw thrust force.

Even for a relatively simple robot such as Skippy, more than a hundred parameters are required
to obtain a realistic model. However, not all of these parameters need to be optimised. A tool that
can help understand which parameters or combinations of them have the highest effect on the robot’s
performance is Sensitivity analysis (Section 4.5.2). Alternatively, independent optimisation tests can
be performed by the designer to determine the most important parameters. Finally, some of these
parameters are dependent on early design decisions. For example, we have decided on the motor and
IMU to be used in Skippy prior to this design optimisation study, and hence these parameters are
excluded from the optimisation.

5.4 Selecting Software: Simulation

In this section the software used for the modelling and optimisation study is presented. Details about
the simulation model implementation and its architecture (top-level layer and sub-layers) are presented
and discussed.
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Figure 5.10: Top-level block diagram of the Simulink model of Skippy.

5.4.1 Models and Blocks

For simulation and modelling we chose Simulink [69] from Mathworks, which is a widely used
software with a free licence for academia. It provides a graphical workflow which facilitates the
modelling process. Moreover, it comes with a variety of solvers for running simulations.

For Skippy a high degree of accuracy is required because this is an open-loop simulation of a
robot that is making fast movements close to an unstable balanced configuration, so any deviation
from the theoretically exact solution grows exponentially with time. An even higher accuracy is
required when gradient-based methods are used because they perform a numerical differentiation of
the outcome of the simulation with respect to the input and initial-value parameters. For this reason,
the solver ‘ode45’ is used, which is a variable-step continuous solver. In addition, the parameter
relative tolerance is set to 10−6 for global optimisation and 10−8 for gradient-based methods.

Figure 5.10 shows the top-level block diagram of the Simulink model of Skippy used in the design
optimisation process. The major parts of this model are as follows.

• input signal formation (yellow blocks);

• ankle joint subsystem, which implements the ankle spring and end stop;

• hip joint subsystem, which implements the hip end stop;

• actuator subsystem, which implements the motor, ring screw and main spring;

• dynamics subsystem, which implements the planar rigid-body dynamics of the robot mechanism;
and the

• stopping criterion, which stops the simulation when the lift-off condition is detected.
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Figure 5.11: Actuator sub-system of the Simulink model of Skippy.

Initial Conditions

As mentioned earlier, the initial-condition parameters must be combined with some assumptions in
order to fully determine the initial state of a simulation. These assumptions are described in Section
5.3.3. It is assumed that a perfectly plastic collision without slipping occurs when the foot touches
the ground; and an impulsive dynamics calculation based on this assumption is used to calculate the
initial values of all of the velocity variables in the system, except the motor’s rotor velocity, which is
set to zero.

Termination Condition

The simulation terminates when the foot lifts off the ground. In the simulator this can be modelled as
a condition where the vertical component of the ground reaction force becomes negative. As long as
the foot is in contact with the ground this value must be positive.

One consequence of the assumption of a perfectly plastic collision is that the normal component
of ground reaction force can be negative during the first one or two milliseconds of the stance phase.
For this reason, the lift-off detector is disabled during the first few milliseconds of a simulation run so
as to avoid a premature termination. This is the purpose of the step block in Figure 5.4.

Actuator System

The actuator subsystem implements the electric motor, the ring screw and the main spring models.
This subsystem takes into account the rotational inertias of the motor’s rotor and the ring screw rod
when calculating the angular acceleration of the rotor in response to motor torque and load torque.
However, as this is an out-of-plane motion, the angular momentum due to this motion is not taken
into account when calculating the motion of the robot. This is theoretically correct if one assumes
that the robot is physically constrained to move in a vertical plane.

The input voltage is fed to the ‘LimitedMotor’ block, which implements the DCX32L [70] model.
From the output torque of the motor, a viscous friction force is subtracted, implemented by the block
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‘MotorFriction’. The resulting torque accelerates a mass with an inertia equal to the sum of the rotor,
the ring screw rod, and ring screw nut (see Table 5.4 and 5.5). The rotation causes the ring screw nut
to translate and compress the main spring, which is attached to it. This produces the final output of
the system, which is the force that is applied to the lever.

MotorFriction—the viscous friction is calculated as follows:

F = A tanh(bxd), (5.3)

with b = 1 and A = Kτ Inl (see Table 5.4), which is the friction magnitude, and xd is the angular
velocity of the rotor.

Motor System

The ‘LimitedMotor’ system contains the implementation of the DC motor model, its thermal model,
the current saturation and ring screw speed limits. The system’s inputs are: (1) the commanded
voltage, (2) the angular velocity of the rotor, and (3) the input torque of the ring screw, which is the
motor’s load torque. The system’s output is the torque tau that is the torque generated by the magnetic
field. The friction torque and the load torque are then subtracted from this, and what remains is the
torque that accelerates the rotor.

This block contains the implementation of the thermal model and the circuit model for a DC
motor. The motor’s circuit is modelled either as an LR or just R circuit. Although the block is
equipped to simulate an LR circuit, we never use it because it makes the simulations more expensive.
All simulations use the assumption L = 0. Specifically, using Kirchoff’s Voltage law the terminal
relationship for the LR circuit is given by

V =Vemf + IR . (5.4)

Vemf is the back EMF voltage that is calculated by the following equation:

Vemf = Kτ ω. (5.5)

The parameters for these equations correspond to the ones presented in Table 5.4, and ω is the
angular velocity of the rotor. This block solves Equation 5.4 for the current value (I), and calculates
the output torque tau as follows:

tau = Kτ I. (5.6)
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The thermal model uses the thermal parameters of Table 5.4, the electric losses:

Ploss = I2R, (5.7)

and the losses due to motor friction:
Floss = |ω|Kτ Inl, (5.8)

to calculate the temperature of the coils and the motor, as well as the varying value of the resistance R.
Due to the flow of current, the temperature of the winding increases. Metal conductors have a positive
temperature coefficient so as the winding temperature increases, its resistance also increases.

Dynamics System

The dynamics subsystem implements a closed-loop hybrid dynamics calculation in planar-vector
arithmetic [29] using functions in the library Spatial_v2 [34]. In this calculation, joints 1 and 2, which
are prismatic joints in the x and y directions, are treated as inverse-dynamics joints, and are held at
zero throughout the simulation. This is equivalent to enforcing a rolling contact without slipping
between the foot and the ground regardless of the value of the ground-reaction force. The outputs
are the accelerations of the forward-dynamics joints and the forces required to maintain the rolling
contact. These forces are interpreted as ground-reaction forces, even if the normal force is negative or
the tangential force lies outside the friction cone. However, the stopping criterion does monitor the
normal force, and stops the simulation as soon as it goes negative; and the slip constraint mentioned
in Section 5.3.2 rules out behaviours in which the tangential force lies outside the friction cone by
more than a tolerance threshold value specified by ‘fmax’ (see Table 5.10).

Hip Joint System

This sub-system contains only an end-stop block, which is described in Section 5.3.1. An output is
produced only when q6 +q7 < q67es (see Table 5.8). If this condition arises then the hip end-stop is
engaged and a torque opposite to the hip and leg closing motion is generated as explained in Section
5.3.1.

Ankle Joint System

The ankle joint subsystem contains: (1) a block implementing the ankle spring, and (2) an end-stop
block that is activated when q5 < q5es (see Table 5.8).

The Simulink sub-system of the ankle joint is presented in Figure 5.12. The inputs to the system
are: (1) the ankle joint’s angle (q5), and (2) its angular velocity (q̇5), and the output is the torque
tau about the joint axis. Value q5 is subtracted from the joint rest angle (asH is parameter ‘aslv_ang’
in Table 5.6) to obtain the derivation of the joint’s angle from rest, which is used for computing
the compression of the ankle spring. The ankle spring system consists of two main blocks: the (1)
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Figure 5.12: Ankle spring sub-system of the Simulink model of Skippy.
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Figure 5.13: Triangle defined by the ankle spring’s attachment points and ankle joint. The left figure
shows the configuration at its rest position, and the right figure shows the same spring after it has been
compressed by (a′−a) m. Drawing is not to scale. See bottom right Figure 5.4 for reference.

‘Taper Bow’ block, which implements the leaf spring model, and (2) the ‘Triangle Kine’ block. The
ankle spring is a compression spring that is attached to the foot and the leg. The leaf spring model is
implemented by a Matlab script, and is described in Section 5.3.1

The spring’s attachment points and the joint axis form a triangle (see bottom right Figure 5.4 and
Figure 5.13 for a simplified view). To obtain a torque about the ankle axis some simple calculations
are required that are performed inside the ‘Triangle kine’ block. This block transforms the joint
angular position and velocity to the corresponding linear quantities that are fed to the ankle spring,
and outputs the torque about the ankle joint axis.

Figure 5.13 shows an abstract representation to demonstrate the ankle spring configuration with
the ankle joint. Parameter c is equal to parameter ‘aslv_len’ in Table 5.6, parameter a′ is the ankle
spring’s rest length (parameter ‘as_L’), and parameter A′ is the ankle joint rest angle (parameter
‘aslv_ang’). The spring’s attachment point on the leg has a distance of c m from point P2 which
coincides with the rotation axis of the ankle joint. The distance b from P2 to the spring’s attachment
point on the foot is constant and can be calculated by the following equation:
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b = ccosA′+
√

a′2 − c2 sinA′2 . (5.9)

Given an angle of the ankle joint A the spring’s new length a can then be calculated by the cosine rule

a =
√

b2 + c2 −2bccosA . (5.10)

Following this, the spring’s rate of compression is the derivative of Equation 5.10, which is:

ȧ = bcsinAa−1 . (5.11)

Then the compression and the compression rate of the spring are fed to the ‘Taper Bow’ block which
produces a linear force F as output. Finally, the output torque tau at the ankle joint resulting from
force F acting along a is

tau =
Fȧ
Ȧ

, (5.12)

and is added to the output of the end-stop to produce the torque about the ankle joint axis.

Energy Flows

The simulation takes into account all energy flows, including all energy losses. In the presented
Simulink diagrams these values come from signals having names starting with the letter E. This is
performed to allow an energy audit on the results. An energy audit is a post-processing technique for
detecting energy discrepancies that occurred during the course of a simulation. At each time value in
the logged time data, it compares the total energy in the system at that time with the energy that was
present at the start of the simulation, plus all of the new energy that has been added so far (from the
battery pack), minus all energy losses since the beginning of the simulation. The two numbers should
be the same. The energy audits are used for three purposes:

1. debugging,

2. checking the accuracy of the simulation, and

3. to study the energy flows to help us understand what is happening during the stance phase.

Energy flows of specific behaviours will be presented in the next chapter.
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5.5 Balancing Studies

The purpose of this section is to present and justify the use of the velocity gain (VG) as a balancing
performance measure for Skippy. The VG is described in Featherstone [30]. This measure provides
means of quantifying a robot’s ability to balance and can be obtained from a single calculation. It is
expressed as a ratio of change in the robot’s state of motion to the amount of effort that the actuator
needs to achieve that change. A higher value of the VG means less work is needed for the robot to
change its state and balance.

5.5.1 Experimental Results

To prove the effectiveness of the balancing algorithm that will be used in Skippy and gain insights on
its design, we built its precursor, a robot called Tippy, which is depicted in Figure 5.14. This robot is
similar to Skippy. It is a 2 DoF actuated 3 D balancer with similar mass and characteristics. It has a
leg, a torso and a crossbar; however, unlike Skippy, Tippy has a fixed base, and its foot is connected
to it via a spherical joint. This robot was created for the sole purpose of balancing. In addition, it does
not have a 4-bar linkage, but a Harmonic Drive [47], and a single revolute joint at the hip.

With Tippy, the first experimental results on Featherstone’s [31] balancing algorithm were pre-
sented in the work of Driessen et al. [24]. For this experiment, Tippy was constrained to rotate only
in the roll plane, by having its hip joint locked and by actuating only the crossbar. In the balance
control literature this configuration is referred to as a Reaction Wheel Pendulum. The practical results
presented in this work demonstrated satisfactory high-performance balancing and tracking; however,
the robot’s performance was impeded by its body’s low stiffness. The results make evident that in
order to obtain a high-performance balancing machine a stiff body is required. Having obtained this
information we are trying to build Skippy to be as stiff as possible, by employing stiffer materials and
structures, and by replacing the elastic Harmonic Drives [47] used in Tippy (which we found to be a
source of instability with high controller gains).

The velocity gain has also been proven to work experimentally in the work of Gonzalez et al.
[39]. In this paper the same balancing algorithm that was used in Tippy, and which will be used in
Skippy, is applied to the HyQ quadruped robot to perform line walking. In Featherstone [30] a linear
velocity gain (LVG) and an angular velocity gain (AVG) are described. For this thesis and the works
referenced the AVG is used.

5.5.2 Angular Velocity Gain

In Skippy, the angular velocity gain is used, as described in [30], which is defined as the step change
in the angular velocity of the robot’s centre of mass about the support point divided by the step change
in the velocity of the actuated joint that causes it. Skippy balances in the sagittal plane using its hip
joint, which has a limited range of motion. Therefore, the larger the magnitude of the velocity gain,
the larger the balance error that can be corrected by the hip joint before it reaches an end stop. So
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Figure 5.14: Left: HYQ balancing on a line using only two feet [39]. Right: Tippy a 3 D balancing
robot [24].

the performance objective for balancing is simply to maximise the magnitude of Skippy’s angular
velocity gain.

Because the AVG is dependent on the state of the robot, for the optimisation study it is measured
in a standard configuration (torso horizontal, robot balanced). Thereupon, an impulse is applied on
the actuated joint and the AVG is measured by the following calculation

Gω =
∆φ̇

∆q̇a
. (5.13)

Parameter ∆φ̇ is the change in Skippy’s CoM angular velocity, and ∆q̇a is the change of the angular
velocity of the actuated joint as a result of the applied impulse. The resulting value Gω is the perfor-
mance objective reflecting the robot’s balancing ability that is used in the optimisation experiments,
which we wish to maximise.

In summary, the AVG has proven to be a robust and effective measure of a robot’s balancing
ability in two cases: (1) its precursor Tippy, which is a similar robot to Skippy, and (2) the more
complicated and significantly heavier quadruped robot (90 kg) HyQ.
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5.6 Conclusion

In this chapter a monopedal balancing and hopping robot named Skippy was presented. The aim
of this chapter is to define the robot’s mechanism and behaviour models, together with the chosen
simulation environment and example model implementations. This chapter follows the philosophy
of the proposed design optimisation approach described in Section 4.2, which is based on creating
realistic models of the robot, while trying to keep these models as simple as possible.

First a literature review on hopping and jumping robots was presented, together with a critical
evaluation on their design purpose, process and choices. This section aimed to locate Skippy in the
current literature, discuss challenges of hopping, the state of the art, and compare design decisions
of other hopping robots with Skippy. Following that, Skippy’s components and limitations were
presented, together with some important design decisions. Then, the behaviour of the robot was
modelled and explained.

Next, models of various parts of Skippy were presented in Simulink, which is the software that
was chosen for modelling and simulation. Following that, the velocity gain was introduced, which is a
measure of a mechanism’s balancing ability that is used as a performance objective in the optimisation
studies. Finally, some real applications of this measure were presented to prove its effectiveness and
justify its use.

In the next chapter the optimisation framework and process are applied for the design and
behaviour co-optimisation of Skippy. This happens as a two-step design study, where the results of
the first study are used as a seed for the second and more advanced study.





Chapter 6

A Versatile Hopper

6.1 Introduction

In the previous chapter a monopedal hopping and balancing robot named Skippy was introduced, and a
model of its hardware and behaviour was presented. In this chapter, the proposed design optimisation
approach is applied to Skippy for behaviour and design co-optimisation.

The challenging aspect of Skippy’s design is that it is required to meet a large number of high-
performance objectives, which are close to its maximum physical potential. Specifically, Skippy
must be a very skilful vertical hopper, which means to hop as high as possible, close to its physical
performance envelope, and at the same time be able to demonstrate a large repertoire of other
demanding behaviours such as: (1) vertical hops, (2) somersaults, (3) travelling hops, and (4) having a
high balancing ability. Some of the physical requirements of these behaviours conflict with each other,
which means that optimising for one leads to a reduction of performance in another. For example,
a high hop requires a significant amount of energy to be stored in one or more springs, whereas
high-performance balancing requires the robot mechanism and actuators to be stiff. Furthermore, stiff
springs are difficult to load from rest, due to the lack of momentum. Another challenge is that this
robot will be built, which means that all the components of the design must be available off-the-self
or be easily manufactured.

The optimisation experiments use the 2-layer optimisation framework and the optimisation
methodology presented in Chapter 4. In the first layer of the framework a set of Skippy’s design
parameters are optimised, and in the second layer a set of performance objective scores are computed,
which are either behavioural objectives or a physical property of the robot. The outcome of the second
layer is: (1) a set of performance scores, (2) the optimal behaviours to achieve each objective score,
and (3) the vector of constraint values. These results are passed to the first layer and are used to
evaluate and generate new designs.

This study is performed in two steps; in the first part, the objective is to find a design that can meet
a set of performance objectives, and the second part is a more advanced study based on the results of
the first part. The summary of the experiments presented in Sections 6.5 and 6.6 is the following.
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1. Discover a design that can: (1) perform a series of four increasing-height vertical hops up to
a 3.2 m hop, (2) perform a series of four decreasing-height vertical hops down to a halt, (3)
be a skilled balancing machine, and (4) perform travelling hops. The objective of this study
is to discover at least one design capable of meeting all of the aforementioned performance
objectives, something that did not exist and was difficult to achieve without the application of
the proposed approach.

2. Given a design capable to meet the previously mentioned performance objectives, a new
round of optimisation studies is performed by adding extra evaluation criteria and performance
objectives, which are: a repeated vertical hop of 2 m, and a 2 m triple somersault. In addition to
these, the model is updated with a more realistic leaf-spring model (see Section 5.3.1).

The result of the first experiment is a Pareto front of optimal designs, capable of achieving all
of the desired performance objectives. From this set, the design with the best trade-off is selected
based on a set of evaluation criteria. Thereupon, the selected design is used as a seed for the second
design study. In this study the complete proposed optimisation process is presented. In addition, more
sophisticated evaluation criteria are introduced for selecting the best design, and a comparison is made
between the final result of the first experiment and a small set of selected designs from the second
experiment. Finally, the optimal behaviours of one selected design are presented and analysed.

6.2 Optimisation Constraints

The optimisation constraints are the same as presented in Sections 5.3.1 and 5.3.2, and are summarised
below.

• Inequality Constraints

1. IMU Saturation Limit.

2. Thrust-bearings Force Limit.

3. Nut Position Limit.

4. Leg and Hip Opening Limit.

5. Slip Constraint.

6. Behaviour Time Limit.

7. Ramp Effectiveness.

8. 4-bar and Ground Collision Limit.

9. Foot and Ground Collision Limit.

• Equality constraints

1. Angular Momentum.
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2. Vertical CoM Velocity.

3. Horizontal CoM Velocity.

The constraints (1) ‘Voltage Limit’, (2) ‘Current Limit’, and (3) ‘ring screw speed limit’ are
directly applied in the simulation. As explained in Section 6.6.9, these values are an indication of
the robot’s effort, which also reflects (together with the constraints) how close the mechanism is to
its true physical potential. In this thesis, they are used only as a post-processing evaluation criterion;
however, these values could provide beneficial information to the optimiser and can have an active
role in the optimisation process as extra objectives or constraints.

Scaling—some of these constraints compare large numbers, such as thrust forces in newtons, while
others compare small numbers, such as voltage ramp durations in seconds. So scaling factors are
applied to each individual constraint so that the numbers being compared are close to 1.

6.3 Determining the Problem Type

To select appropriate methods to perform the optimisation experiments, the problem type must be
determined (see Section 4.3). The examined optimisation problem falls into the following categories.

Continuous—the system consists of continuous models, and does not have discrete variables.

Constrained—by definition the problem has 12 constraints.

Multi objective—the aim is to design a versatile robot capable of meeting several performance
objectives (more than 10 in each experiment).

Deterministic—the models do not include any stochastic elements (i.e., the system produces the
same output for the same input).

Non-linear—the problem consists of non-linear dynamics and models (e.g., regressive springs in
Figure 5.7), and non-linear relationships have been experimentally observed between the independent
variables and the performance objectives.

Non-convex—in a series of preliminary experiments, multiple local solutions were discovered for
a given objective. This means that the problem has more than one mode, and hence it should be
addressed with a global optimisation algorithm (Section 2.2.3).
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6.4 Selecting Software: Optimisation

Given the problem type and the available resources (i.e., licences for commercial software and
available computational power) ModeFrontier [27] (MF) is a suitable choice as the optimisation
software. MF offers a large selection of optimisation algorithms that fit the description of the
examined problem, in addition to graphical work flows for the optimisation process, sophisticated
DOE methods, and a variety of post-processing and visualisation tools for data analysis. In addition,
the work flow can communicate with Matlab [67] (and Simulink [69]), which are used in this thesis to
perform accurate and realistic dynamics simulations.

6.4.1 Optimisation Algorithm

For the optimisation experiments the MOGA-II [80] algorithm was chosen. MOGA-II is a proprietary
version of the multi-objective genetic algorithm [18] for global optimisation that can efficiently handle
problems that are multi-objective, non-linear and constrained. The overview of the algorithm is
presented in Algorithm 1.

Starting with an initial population set as an input (parents), the algorithm generates new offspring
using the classical genetic operators of: (1) mutation, (2) selection, and (3) cross-over. When a new
generation is complete (i.e., the number of offspring is equal to the number of parents) the fitness of
all the individuals is evaluated to determine the best solution based on the optimisation objectives and
constraints. All the non-dominated designs (i.e., the Pareto front) are stored in the elite set. Then, a
new parent set is generated from the elite set and the best designs of the previous generation. The
process is repeated until the maximum number of generations is reached. The hyper-parameter values
of the algorithm are presented in Table 6.1.

Genetic Encoding and Operators

The population consists of individuals, with each being a solution to the examined problem. The
individuals, which can also be called chromosomes are described by the values of the independent
variables (which are also called genes). To generate a new offspring, one of the genetic operators is
applied based on the set of probabilities, as shown in Algorithm 1.

Mutation—given a mutation ratio, a percentage of the independent variables changes value. For
example, if the mutation ratio is 50% and there are eight genes, then exactly four out of eight genes will
be randomly selected and change value, such as the new value still remains within the given bounds.
The probability that an individual is mutated is dependent on the hyper-parameter ‘P(mutation)’. A
high mutation probability introduces randomness, and hence promotes exploration; however, if this
value is not properly selected it may result in a poor convergence rate. A mutation ratio of 1 results in
a random search.
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Algorithm 1: MOGA-II Generational Evolution
Result: Feasible Designs or Behaviours
Input: Initial Population Set;
Evaluate Fitness of Initial Population Set;
while N. of Generations is Not Reached do

while N. of New Offspring < Generation Size do
x ∈ Uniform(0,1);
if x < P(Directional Cross-Over) then

Directional Cross-Over;
else if x ≤ 1-P(Selection)-P(Mutation) then

Classical Cross-Over;
else if x ≤ 1-P(Mutation) then

Selection;
else

Mutation;
end

end
Generation Fitness Evaluation;
Elitism Selection;

end

Selection—this operator is used to simulate the process of natural selection in nature. A solution is
chosen and passes unaltered to the next generation for future breeding. The probability that a solution
is selected is equal to the hyper-parameter ‘P(selection)’, and is dependent on its fitness. A higher
fitness value means higher chances of a solution to be selected (for more details see Coello et al. [18]).
This operator ensures that fit designs are maintained across generations.

Elitism—creates a set that contains the fittest candidates from all generations. When Elitism is
switched on each new generation consists of the Elite set and the best offspring generated by the
previous generation. The elite set is updated after the completion of a generation, and is always less
or equal than the population size. This operator guarantees that a solution will not be degraded over
the course of evolution and has been shown to improve the convergence of the algorithm [18, 80].

Cross-Over—this operator combines the genes of two individuals to generate new offspring. This
operator promotes diversity in the population, while combining characteristics of the two parents.
Two chromosomes randomly exchange genes to create new offspring. The probability a chromosome
is selected is dependent on the hyper-parameter ‘P(Cross-Over)’.

Directional Cross-over—this operator is similar to the cross-over operator; however, it works under
the assumption that, based on the fitness of the parents, the direction of improvement can be estimated.
This is done by a heuristic which determines which parents should generate new offspring. The proba-
bility of a chromosome to be selected is equal to the hyper-parameter ‘P(Directional Cross-Over)’.
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The algorithm decides which operator to apply by generating a pseudo-random value x between 0
and 1. By using the presented operators, and the absence of dependency on gradient information the
optimiser has the ability to escape local optima. The choice of the hyper-parameter values (which are
probabilities) determines the trade-off between exploration and exploitation of the algorithm. In the
presented experiments, a combination of these hyper-parameter values was chosen to promote in equal
terms exploration and exploitation; however, during initial experiments, where no known solution
existed, a combination of hyper-parameters was selected that tilted the scale towards exploration.
Finally, the values of these parameters should be decided based on the available current information
and experiment purpose.

Constraint Handling

Constraint handling can effectively guide the optimisation by passing information to the optimiser
about the margin of success and failure (Section 4.1). For handling the constraints, the algorithm
offers two options:

1. penalising objectives, or

2. treating constraints as extra objectives.

Due to the large number of already existing objectives, the option of penalisation seems to be the
most reasonable. In this case, for each individual, a constraint vector score is calculated, which is
subtracted (or added, if the objective is minimised) from the value of the objective function. By using
this option it is possible for unfeasible designs to have a higher score than feasible designs, which
can help the optimiser to navigate towards regions with potentially better solutions. An additional
variable for constraint handling that is utilised in this study is the ‘tolerance value’. The purpose of
this value is to inform the optimiser how severe is a violation of a constraint.

Tolerances can be applied to constraints that are allowed with an error margin, such as the
Performance Constraints (see Section 5.3.2). For example, in vertical hops the robot is required to
have zero angular momentum and zero vertical velocity. However, this constraint is very strict and
even if it is met in simulation, it may lead to over-optimisation. For this reason, a small tolerance is
allowed in these constraints to give the optimiser more freedom to explore the search space, and to
avoid over optimisation of the theoretical model.

Algorithm Type

The software also offers three implementations of the algorithm. These are:

1. Generational Evolution—the hyper-parameters remain constant and the next generation is
created only when all design evaluations are complete;

2. Steady Evolution—new designs are generated regardless of whether or not a generation is
completed;
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Parameter Name 1st Layer (Mechanism) 2nd Layer (Behaviour)
Initial population DOE + User-defined DOE + User-defined
Population Size ∼ ∼

Number of Generations ∼ ∼
Prob. of Selection 5% 5%
Prob. of Mutation 10% 10%

Prob. of Directional CO 50% 50%
DNA String Mutation Ratio 5% 5%

Elitism Enabled Enabled
Treat Constraints Penalising Objectives Penalising Objectives
Algorithm Type Generational Evolution Generational Evolution

Table 6.1: Hyper-parameters for the MOGA-II algorithm for the mechanism and the behaviour layers.
Different DOE techniques are used to promote exploration of the search space by adding points that
maximise the minimum distance between the existing points. ‘User defined’ are mechanisms that were
found from previous experiments and are known to perform well. Initial population and population
size differ for the two experiments. ‘CO’ stands for crossover.

3. Adaptive Evolution—a heuristic is used to tune the hyper-parameters of the algorithm.

For the presented experiments, the Generational Evolution implementation was chosen. The
second option provides faster results since no resources are wasted while waiting for the generation to
be completed; however, sub-optimal designs can propagate to the next generation, since evaluation is
performed without full information. Regarding the third option, the selected hyper-parameter values
of Table 6.1 were selected after a series of independent exploratory experiments, and hence there is no
need to go with this option, which should be used when there is no clear idea on how these parameters
should be set.

6.5 Hopping, Travelling and Balancing

In this section the proposed optimisation approach is applied to Skippy. The objective of the first
out of the two studies is to reach the performance envelope in vertical hopping as well as to perform
moderate-difficulty travelling hops, and balance as efficiently as possible.

To select appropriate values for these performance objectives, a series of single-objective prelim-
inary optimisation experiments (which are not presented in this thesis) were performed, using the
gradient-based algorithm SQP in Matlab’s optimisation toolbox [68]. In these exploratory experiments
the model of Skippy presented in Chapter 5 was used, but not the proposed optimisation approach.
The behaviour and design parameters were simultaneously optimised, but for only one objective at a
time (and not in two layers as in the proposed framework).

Obtaining a design capable of achieving a large set of performance objectives was very difficult
with the aforementioned approach. For this reason a more sophisticated way was sought, which was
the motivation to develop the proposed design and behaviour co-optimisation approach.
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6.5.1 Performance Objectives

The objective of this study is to find a design that can: (1) perform a series of four increasing-height
vertical hops (zero angular momentum and horizontal velocity) up to a 3.2 m (8 m/s) hop starting
from rest, (2) perform a series of four decreasing-height vertical hops down to a halt, (3) be a skilled
balancing machine, (4) start travelling following a vertical hop, keep travelling, and stop travelling and
go back into a vertical hop. Table 6.2 shows the 12 performance requirements that the aforementioned
objectives correspond to and their mapping to optimisation objectives.

The hopping height is defined to be the rise in the robot’s CoM from the moment of lift-off to
the apex of the hop. This definition provides us with a simple relationship between vertical lift-off
velocity (parameter ‘vcm1y’ in Table 5.10) and hopping height, given by the formula

height =
v2

cm

2g
=

v2
cm

19.61
.

In all of the behavioural objectives the zero ‘Angular Momentum’ constraint is applied (see
Section 5.3.2), and in the travelling hops (objectives 9–11) the desired horizontal CoM velocity is
treated as an extra objective and not a constraint. Finally, the balancing ability measure is the angular
velocity gain for the reasons explained in Section 5.5, which must have its magnitude maximised, and
its value comes from a single calculation. The remaining objectives are all modelled as a squared
error minimisation problem between the desired velocity and the outcome velocity of the CoM, at the
moment of lift off.

In objective 8, Skippy is supposed to land and stop, meaning that there is not supposed to be a
lift-off. However, the simulation code expects a lift-off, and uses the moment of lift-off as the trigger
to stop the simulation. So a very slow lift-off velocity of 0.5 m/s is specified, which corresponds to a
hopping height of 1 cm. Another special feature of objective 8 is that Skippy is making a transition
from hopping to balancing behaviour, which requires that the CoM should be directly above the
contact between the foot and the ground, so this is included as a second objective.

Performance objectives 8 to 12 all have two expressions listed in the objectives column in Table
6.2. They are implemented as multi-objective problems, but the final score is a single number
computed from the values of the two expressions. Logically, this makes the optimisation process a
single-objective problem; but it was discovered that the optimisation algorithm found good behaviours
more quickly if it was given a multi-objective problem to solve.

Performance Envelope

In a series of single-objective preliminary experiments with Matlab’s optimisation toolbox [68],
designs that could get close to a 4 m (9 m/s) hop were also discovered, but they were so specialised
for high hops that they failed to perform some of the other behaviours we required. So we settled
for a 3.2 m target height, after a fall of 1.8 m as a reasonable compromise between hopping height
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Performance Objective Optimisation Objective(s)
1 Hop from 0 (rest) to 2 m/s min (vcm1y − 2)2

2 Hop from −2 to 4 m/s min (vcm1y − 4)2

3 Hop from −4 to 6 m/s min (vcm1y − 6)2

4 Hop from −6 to 8 m/s min (vcm1y − 8)2

5 Hop from −8 to 6 m/s min (vcm1y − 6)2

6 Hop from −6 to 4 m/s min (vcm1y − 4)2

7 Hop from −4 to 2 m/s min (vcm1y − 2)2

8 Hop from −2 to 0.5 m/s
min (vcm1y − 0.5)2

min (CoMx−ground contact x)2

9
Travelling hop from
[0, −4] to [2, 4] m/s

min (vcm1x − 2)2

min (vcm1y − 4)2

10
Travelling hop from
[2, −4] to [2, 4] m/s

min (vcm1x − 2)2

min (vcm1y − 4)2

11
Travelling hop from
[2, −4] to [0, 4] m/s

min (vcm1x)2

min (vcm1y − 4)2

12
Maximise balancing ability

of the machine
max |Angular Velocity Gain|

Table 6.2: Mapping from performance objectives to optimisation objectives.

and versatility. Example behaviours demonstrating that the robot is close to its physical limits are
presented in the results of Section 6.6.9.

Reachability

Skippy cannot reach 3.2 m (8 m/s) directly from a standing start. To achieve a 3.2 m hop Skippy must
first reach a 1.8 m (6 m/s) height. This can be achieved by a series of successively increasing height
hops. The values of these intermediate hops were also determined by single-objective experiments
using Matlab. Exploratory optimisations revealed that the mechanism needed a minimum of three
preliminary hops, and that suitable heights for these hops would be 0.4 m (2 m/s), 0.8 m (4 m/s)
and 1.8 m. All three are close to Skippy’s performance envelope as observed from the exploratory
optimisations; few designs could make an initial hop significantly higher than 0.4 m; few could reach
higher than 0.8 m after landing from a 0.4 m hop; and so on.

Similarly to the vertical hops, the travelling hops should also be a result of reachable states that
the robot should come from and go to. Specifically, the robot starts a travelling hop of [2,4] m/s after
a fall from a vertical hop of 0.8 m then achieves a limit cycle for that travelling velocity, and can go
back to a vertical hop of 0.8 m again so it can eventually continue its operation.

Versatility

Besides the physically maximum vertical hop, we want the robot to display a plethora of other
behaviours. For this reason, single-objective experiments were performed to determine a feasible
travelling velocity for a Skippy mechanism, which is not close to its performance envelope in this
category. In addition to that, because the robot has only one leg, it needs to be able to balance.
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The balancing behaviour is not examined in these experiments, but the velocity gain is used (see
Section 5.5), which has been shown as an effective measure of balancing ability.

Optimality of Sequence

For the successive hops up to 3.2 m (8 m/s ) and back to a resting configuration we have selected a step
of ±2 m/s. This is not necessarily the optimal sequence to achieve the maximum hop or stop hopping
after that. In this study we only seek any way to reach the performance envelope so we settled with
these values when we discovered that they are feasible.

6.5.2 Selecting Parameters to Optimise

For the Mechanism Layer the eight design parameters presented in Table 6.3 were chosen to be
optimised. The sensitivity analysis presented in Section 6.6.2 has shown that these parameters have a
significant impact on the robot’s performance for three selected performance objectives, which are:
(1) the highest vertical hop, (2) the initial hop (starting from rest), and (3) the robot’s balancing ability
(AVG).

These parameters are: one kinematic parameter, one inertia parameter and six spring parameters.
They were selected based on the following three criteria: (1) the sensitivity analysis results, (2)
manufacturing/delivering lead time (i.e., some parts can be easily reordered or modified unlike other
parts that may require a lot of time to be manufactured, such as the ring screw rod 5.3.1, or be
delivered due to bureaucratic processes), and (3) a series of initial exploratory experiments where we
experimented with various parameters in order to obtain a sufficient understanding of the system. In
these experiments a larger number of parameters were allowed to vary, and we were able to determine
which parameters have the largest influence on the system. A more elaborate discussion on the design
parameters with the highest effect is presented in the sensitivity analysis section 6.6.2.

Mechanical Tolerances

The MOGA-II algorithm can handle both continuous and discrete variables; however, there are limits
to precision to which mechanical components can be built. Ignoring these limits and allowing the
optimiser to seek values beyond them can lead to over-optimisation of the theoretical model and
amplifications of modelling errors. For example, with the batch of real fibreglass springs we obtained,
tested and built our model on we observed variations between spring lengths of about 5 mm. This
means that optimising for values less than this limit would result in a waste of resources, because the
springs cannot be manufactured with such high tolerance. For this reason the ‘step’ value was set, so
the search-space is reduced and the model does not get over-optimised.

In the Behaviour Layer, the initial foot angle (‘q4i’), the initial nut position (‘q10i’), which
determines the hip angle, and all the ‘Input Parameters’ are optimised (Table 5.10). Overall, 15
behavioural parameters are optimised in the second layer, and eight design parameters in the first
layer.
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Name Description
Lower
Bound

Upper
Bound

Step

d2toe
length of foot,

ankle to toe tip [m]
0.19 0.26 0.001

torso_cx
torso+ centre of mass

x coordinate [m]
0.35 0.45 0.001

as_L
ankle spring

rest length [m]
0.15 0.22 0.005

as_Phi
ankle spring

arc angle [rad]
0.9 1.2 0.005

as_F25
force to compress

ankle spring 25% [N]
800 1300 5

ms_L
main spring

rest length [m]
0.15 0.22 0.005

ms_Phi
main spring

arc angle [rad]
1.2 1.9 0.005

ms_F25
force to compress

main spring 25% [N]
800 1400 5

Table 6.3: List of eight parameters to be optimised in Skippy’s mechanism. Step is the discrete
distance between successive values that the optimiser is allowed to take. The symbol ‘torso+’ means
the torso plus the crossbar, treated as a single rigid body.

6.5.3 Design of Experiments

To maximise the amount of qualitative information in the initial population, an appropriate set of
designs and behaviours must be selected for the Mechanism and Behaviour Layer respectively. The
aim is to create a trade-off between exploration and exploitation of the search space that will allow
the algorithm to find at least one feasible design as well as to discover a diverse set of Pareto-optimal
designs.

This is achieved by creating an initial population with seeds that are known to work for some
performance objectives (discovered in preliminary single-objective optimisation experiments), and by
adding new seeds generated by DOE techniques for exploration. As mentioned in Section 6.5.1, an
initial exploration has resulted in a rough estimate of the potential of Skippy’s mechanism in a series of
single-objective optimisation experiments. In these preliminary studies, 11 different mechanisms and
their optimal behaviours were discovered, for achieving each of the performance objectives presented
in Table 6.2. Each of the discovered behaviours was used as an initial seed for the corresponding
optimisation experiment of the Behaviour Layer.

For generating new designs, the Incremental Space Filler (ISF) algorithm [27] is used. Given
the input variables and their bounds (see Table 6.3), ISF incrementally generates new designs by
maximising the minimum distance from the existing points, using the euclidean norm. In this way,
the population provides a better coverage of the search space.
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Parameter Name 1st Layer (Mechanism) 2nd Layer (Behaviour)
Initial population ISF ISF + User-defined
Population Size 10 10

Number of Generations 30 30

Table 6.4: DOE parameters for the mechanism and the behaviour layers. ISF DOE technique is used
to promote exploration of the search space by adding points that maximise the minimum distance
between the existing points. ‘User defined’ means mechanisms or behaviours that were found from
previous experiments and are known to perform well.

Mechanism Layer

In the absence of a single mechanism capable of achieving all of the 11 behavioural performance
objectives, 10 initial designs were generated using the ISF Technique. These designs evolved for 30
generations, to produce 300 different Skippy mechanisms.

Behaviour Layer

Having obtained 11 behaviours and designs that are capable of achieving one of the performance
objectives each, they were used as seeds in their corresponding behavioural optimisation of the
Behaviour Layer. Each of these 11 optimisation experiments had an initial population of five seeds,
out of which five were behaviours of mechanisms that can achieve only that objective, and the
remaining five were generated using the ISF algorithm. Each behavioural experiment produced 30
generations, that resulted in 300 explored behaviours.

6.5.4 Global Optimisation

With the proposed approach 300 designs were discovered out of which 83 (∼28%) were feasible and
met all the performance objectives. A design is successful when the targeted vertical CoM velocity
is within a range of ±0.3 m/s from the desired value in both vertical and travelling hops, plus a
tolerance of ±0.3 m/s in the horizontal CoM velocity of the latter, in addition to not violating any of
the constraints.

To facilitate the design selection process in the 12-dimensional space, a performance evaluation
score is defined described by equations:

ev = ∑
8
i=1 |ẏi − ẏTi|

et = ∑
11
i=9 |ẋi − ẋTi|+ |ẏi − ẏTi| .

(6.1)

Value ev is the total velocity error for vertical hops (objectives 1–8 in Table 6.2) and et is the total
error travelling hops (objectives 9–11 in Table 6.2). ẏi is the vertical lift-off velocity of the CoM for
the best behaviour of performance objective i, and ẏTi is the target vertical lift-off velocity for the
same performance objective. Similarly for ẋi and ẋTi, which are the final and target horizontal lift-off
velocity of the CoM respectively. The total evaluation score for each design is defined as:
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Figure 6.1: Plot of the magnitude of the AVG versus the total error as defined in Eq. 6.2. The
design with the best trade-off between hopping ability and balancing was selected to be Design 268
(in magenta), which has a combination of high AVG value and low total error for the behavioural
performance objectives. The Pareto front consists of the designs that the black line passes through.

etot = ev + et . (6.2)

Fit designs have a high magnitude of the AVG and low total error. Figure 6.1 shows the total error
versus the magnitude of the AVG for all 83 successful designs discovered by the design optimisation
approach. Designs close the bottom right of the plot are fitter than designs further away. Design 268
which is labelled and coloured in magenta has a high AVG value of 0.887 and can meet the specified
performance requirements with a relatively low error.

The design located at the top right of the Figure 6.1, which has the highest AVG value, has also a
very poor performance in hopping, which demonstrates the conflicting nature between balancing and
hopping. Design 268 is used as an initial seed for the more advanced optimisation experiment of the
next section. There, comparisons are made between Design 268 (the seed) and new optimal designs
based on new and more advanced evaluation criteria. In addition, the optimal behaviours of the new
optimal design are presented and discussed. The results presented in this section are published in
Gkikakis and Featherstone [38].

6.6 Hopping, Travelling, Somersaulting and Balancing

In this section, the final result of the previous design study, which is a single design is used as a seed
in a new and more advanced optimisation study. In this study the complete optimisation methodology
proposed in Section 4.5 is presented together with a deeper discussion on the results and the evaluation
criteria. Furthermore, several additions and changes were performed in the model of the mechanism
and the performance objectives.
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The changes in the model are summarised below.

1. A new model of the fibreglass spring is used with a more realistic hysteresis model. The
immediate result of this is that Design 268 cannot meet any longer the 3.2 m hop due to the
dissipated energy in the new spring model. The new maximum hopping height is now 3 m.

2. Losing energy is easier than gaining it, something that we also observed from the previous
study. The number of successive hops required to come from the maximum hop to a halt has
been reduced to three hops.

3. In exploratory experiments with design 268 and the new spring model, we discovered the
capabilities of the new mechanism, and the performance objective values for the intermediate
hops and travelling hops have changed.

4. Behaviours with angular momentum are explored by adding a new performance objective of a
2 m triple somersault after a 2 m vertical hop.

5. This experiment also explores stable limit cycles for vertical hops, by introducing a repeated
vertical hop of 2 m.

The final result of this design optimisation study is a design and its optimal behaviours for
achieving a set of desired performance objectives, and the optimal behaviours of the selected design
are presented and analysed.

6.6.1 Performance Objectives

Table 6.6.1 shows the new performance objectives and their mapping to optimisation objectives. The
new performance requirements are a result of the new spring model and knowledge gained from the
previous experiments. To reach the new maximum hop of 3 m a minimum of three preliminary hops
is needed, and the heights for these hops are 0.6 m, 1 m and 2 m.

Having reached a 3 m hop, Skippy needs to come back down again and stop. As losing energy is
easier than gaining it, the new exploratory optimisations revealed that Skippy needs to bounce only
twice before coming to rest, and that suitable heights for these two bounces would be 2 m and 0.6 m.

It was also discovered that Skippy can travel faster than the previous objective, despite the
additional energy losses from the new spring model. This shows that the mechanism of Skippy has
more potential in this objective, which could be explored in a future study where the performance
envelope of travelling hops is sought. Specifically, the requirements for the travelling hop were
increased from 0.8 m height and 1.6 m distance to a 1 m height and 2.3 m long hop.

In addition, a repeated vertical hop of 2 m is introduced. This performance requirement introduces
a vertical hopping limit cycle, in addition to the travelling limit cycle. Furthermore, a 2 m triple
somersault is added. Preliminary experiments showed that a single or double somersault can be
achieved easily by various mechanisms, but a quadruple somersault was very difficult to achieve, so
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Performance Objective Optimisation Objective(s)
1 Hop from 0 (rest) to 3.4 m/s min (vcm1y − 3.4)2

2 Hop from −3.4 to 4.5 m/s min (vcm1y − 4.5)2

3 Hop from −4.5 to 6.3 m/s min (vcm1y − 6.3)2

4 Hop from −6.3 to 7.7 m/s min (vcm1y − 7.7)2

5 Hop from −7.7 to 6.3 m/s min (vcm1y − 6.3)2

6 Hop from −6.3 to 6.3 m/s min (vcm1y − 6.3)2

7 Hop from −6.3 to 3.4 m/s min (vcm1y − 3.4)2

8 Hop from −3.4 to 0.5 m/s min (vcm1y − 0.5)2

9
Travelling hop from

[0, −4.5] to [2.5, 4.5] m/s
min (vcm1x − 2.5)2

min (vcm1y − 4.5)2

10
Travelling hop from

[2.5, −4.5] to [2.5, 4.5] m/s
min (vcm1x − 2.5)2

min (vcm1y − 4.5)2

11
Travelling hop from

[2.5, −4.5] to [0, 4.5] m/s
min (vcm1x)2

min (vcm1y − 4.5)2

12
Triple somersault from
[0, −6.3] to [0, 6.3] m/s

min (vcm1y − 6.3)2

min (hcm1 − 3.5)2

13
Maximise balancing ability

of the machine
max |Angular Velocity Gain|

Table 6.5: The performance objectives and their mapping to optimisation objectives.

we settled for 2 m triple back-flip. This performance objective introduces behaviours with high angular
momentum, something that was not examined in the previous study. To achieve the somersault, an
angular momentum that is sufficient for the robot to perform three full self rotations about the sagittal
plane is defined. This value assumes that the robot is in a neutral configuration (hip angle is in the
midpoint of its fully closed and open configuration) during the flight phase, which can be easily
achieved by a flight-phase controller. The time that the robot spends in the air is defined as:

t =
2vcm

g
=

2vcm

9.81
, (6.3)

and for an initial velocity of 6.3 m/s to achieve a 2 m vertical hop, this is about 1.28 s.
This study follows the same philosophy as the previous one. Specifically, versatility is improved

by adding new behaviours, which are the somersault and a repeated vertical hopping cycle; minimality
(the number of steps to come to a halt from the maximum hopping height has been reduced to three
steps instead of four); and reachability except for the case of stopping from the 2 m somersault.

The travelling hops and the vertical hops are mapped to optimisation objectives in the same way
that was presented in the previous section, and the somersault is treated as a bi-objective optimisation
problem by minimising the errors between the desired and outcome angular momentum, and desired
and outcome lift-off vertical CoM velocity.

6.6.2 Sensitivity Analysis

In this section, a sensitivity analysis is performed according to the methodology presented in Sec-
tion 4.5. This analysis serves the following purpose: 1) to gain a deeper understanding of the examined
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system, 2) to identify the design parameters with the highest influence in Skippy, and 3) to reduce the
dimensionality of the search space by removing from the experiment parameters with low influence,
which will lead to less computations.

DOE

To perform the analysis, a set of designs is generated so that the input design variables (or factors in
the context of sensitivity analysis) have low correlation between them. Then, sensitivity analysis is
used to identify interaction effects of factors on responses (outputs).

To obtain an appropriate initial population for the experiment, a 2-level Reduced Factorial
algorithm is used to generate 1024 designs. Due to the high dimensionality of the search space and
the high cost of simulations the Full Factorial algorithm (see Section 4.5.2) is prohibitively expensive.

Correlations between input values can lead to biased results that are unreliable. To validate the
efficiency of the sampling algorithm the co-linearity indices of the sampled data are calculated. Index
values close to one indicate a well-distributed dataset over the search-space [42]. Insufficient sampling
of the search space or correlated input variables could yield co-linearity indices with values larger
than one. The mean value of the co-linearity indices of the generated dataset is ∼ 1.001.

Algorithm

For estimating the interaction effects the Smoothing Spline Analysis of variance [42] (SS-ANOVA)
approach is used. SS-ANOVA is a non-parametric statistical approach based on the classical ANOVA,
and is used for identifying main and interaction linear effects. These methods are used to quantify the
interaction effect with a single value, which represents the effect of each input variable to the global
variance (the objective functions in the examined case) as a percentage. Details about SS-ANOVA
can be found in Gu [42].

Selecting Parameters

A sensitivity analysis is performed for 13 design parameters, and for three performance objectives.
The design parameters have all been previously introduced in Section 5.3.1, and are summarised in
Table 6.6. Preliminary optimisation experiments have indicated that the selected parameters have
potentially a significant influence on the robot’s performance.

As shown in Figure 5.7, the curvature of the fibreglass leaf springs (parameters ‘as_Phi’ and
‘ms_Phi’) affects their regression behaviour, which means greater stored elastic energy for a given
stroke and maximum force (which affects hopping), and greater stiffness at low force levels, which
affects balancing. Parameters ‘as_F25’ and ‘ms_F25’ define the maximum force of the spring at the
given stroke (at 25% compression from its rest length) and therefore the amount of stored elastic
energy, which is crucial for performing hops.

Parameter ‘torso_cx’ specifies the horizontal location of the torso’s centre of mass (CoM) which
holds a significant part of the robot’s total mass (2.2 kg out of 3 kg). This parameter affects the ground
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Name Description Lower Bound Upper Bound
Kinematic Parameters and Limits

rtoe radius of toe [rad] 0.25 0.35
d2toe length of foot (body 4) [m] 0.20 0.26
d05 lever length [m] 0.1 0.11
torso_cx torso+ centre of mass x coordinate [m] 0.35 0.45

Ankle spring parameters
as_L ankle spring rest length [m] 0.14 0.26
as_Phi ankle spring arc angle [rad] 0.5 2
as_F25 force to compress ankle spring 25% [N] 950 1250
aslv_len ankle spring lever length [m] 0.04 0.05

Main spring parameters
ms_L main spring rest length [m] 0.14 0.26
ms_Phi main spring arc angle [rad] 0.5 2
ms_F25 force to compress main spring 25% [N] 950 1250

Ankle end stop
q5es ankle end stop engagement angle [rad] 0.75 0.95

Hip end stop
q67es hip end stop engagement position [rad] 0.1 0.2

Table 6.6: Design parameters that were taken into consideration in the sensitivity analysis. These
parameters have shown to affect the robot’s performance in preliminary optimisation studies, and
hence have been chosen to be examined in a thorough analysis.

reaction forces and as a result the final outcome of the stance phase. Parameter ‘d2toe’ specifies
the length of the foot measured from the toe to the ankle, and affects the direction of the ground
reaction force making it also an important parameter for hopping. Parameters ‘d2toe’ and ‘torso_cx’
both affect the magnitude of the angular velocity gain (see Section 5.5). The effect of foot curvature
(parameter ‘rtoe’) on legged locomotion has been the topic of interest in other disciplines, such as in
biomechanics of human walking in the work of Sichting et al. [100], where it has been shown that
this parameter can result in lower work requirements during walking, and hence facilitate legged
locomotion.

The end stops are used for preventing the robot from reaching undesired configurations by defining
the range of motion of the joints, and for dissipating energy upon activation, hence their activation
positions play a crucial role in the performance of the mechanism. In preliminary experiments
different Skippy mechanisms engage the hip end stop during behaviours that result in the 3 m hop.
Early activation of the end stops may limit the performance of the mechanism; and late activation
may lead to over-extension of the robot’s joints.

Other parameters that were investigated in preliminary experiments but not in the sensitivity
analysis study include the hip and ankle end stop parameters, and the ankle rest angle. The leg length
(parameter ‘p2x’ in Table 5.2) was always kept fixed in order to fix the overall scale of the robot;
otherwise the optimiser would try to make the whole robot bigger.
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Figure 6.2: Sensitivity-effect bar chart for a hopping height of 3 m from a 2 m fall.

Results

The analysis was performed for three objectives, which are: (1) the AVG, (2) the initial hop (from rest
to 0.6 m vertical hop), and (3) the high hop (from −2 m to a 3 m vertical hop). These are corresponding
objectives 1, 4 and 13 in Table 6.5. The high hop is an important objective because it is the behaviour
where the performance envelope of the robot is sought, and potentially the most demanding. The
initial hop is examined to make a comparison between the effects of the design parameters in both
high and low hops. Finally, the angular velocity gain describes the balancing ability of the robot,
which is also an important behaviour, and is the product of a simple computation (see Section 5.5).

Figures 6.2–6.4 present the main results of the analysis, which are the sensitivity-effect bar charts.
In these charts, each bar represents the percentage of interaction that a corresponding parameter has
on the variance of the examined performance objective. The sum of all interaction values is equal to
one. For each chart, only the most influential parameters are presented, which are the parameters that
their cumulative effect sums up to 99%.

Figure 6.2 presents the effect of 10 parameters in the behaviour to achieve a vertical hopping
height of 3 m after a 2 m hop. The parameters with the highest effect are: (1) the torso’s centre of mass
x coordinate (‘torso_cx’), (2) the lever distance of the ankle spring to the leg (‘aslv_len’), (3) the force
at 25% of the ankle spring (as_F25), and (4) the length of the foot (d2toe). Parameter ‘torso_cx’ has
the highest influence (∼ 52%) in the maximum hop. Finally, one can also observe that the activation
point of the hip end-stop (‘q67es’) has a small effect on the performance of the robot because it is
engaged in some behaviours.

Figure 6.3 shows the effect of the eight most influential parameters in the behaviour to achieve
an initial hopping height of 0.6 m. The challenging aspect of this behaviour is to build the required
momentum to lift off from the ground, when starting from rest. Once the robot achieves its first
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Figure 6.3: Sensitivity-effect bar chart for achieving a hopping height of 0.6 m from rest.

hop, the system can then recycle stored energy from previous hops to increase its hopping height.
According to these results, the parameter with the highest effect (accounts for almost 50% of the
overall effect) in the initial hop is the curvature of the ankle spring (‘as_Phi’). This parameter, affects
the regression behaviour (the degree to which the stiffness decreases with increasing compression) of
the ankle spring. A highly-regressive spring has high initial stiffness, and hence is more challenging
to compress, especially from a state of low momentum, which is the case in the initial hop.

Figure 6.4 presents the effect of three design parameters in the magnitude of the AVG (the other
parameters do not affect its value). One can observe that the x coordinate of the torso’s centre of
mass has the highest impact (86%) making it the most important parameter in Skippy for achieving
a high-balancing skill. The 4-bar lever length (‘d05’) has an effect of ∼ 11%, followed by the foot
length which contributes at about 4% in the variance of the magnitude of the AVG.

Conclusion

To conclude, the sensitivity analysis results indicate that parameter ‘torso_cx’ has a high impact in the
three examined performance objectives. Furthermore, the spring parameters have a high contribution
to the performance of the high and initial hops. In addition, the length of the foot (‘d2toe’) also has
a significant influence in both examined behaviours, and the lever length (‘d05’) appears to have a
significant impact in the balancing behaviour of the robot (AVG) and a relatively small impact in
the 3 m hop. These findings are taken into consideration for selecting the design parameters to be
optimised during the following optimisation experiments.

In order to facilitate the CAD design of the robot, we want to make it as modular so possible, so
we can easily perform changes without having to make major design modifications. For this reason,
we decided to keep fixed some of the examined parameters. Parameters ‘as_L’ and ‘ms_L’ were kept
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Figure 6.4: Sensitivity-effect bar chart for the AVG.

fixed at 0.195 m, and only the curvature and specified force for both springs are optimised. Parameter
‘aslv_len’, which is the attachment point of the ankle spring to the ankle is also kept fixed, because it
affects the design of the ankle. For the same reason the ankle and hip end stop engagement positions
are now constants. By varying the spring arc angle and stiffness, we are able to modify the robot
simply by replacing them with new ones, without the need of extra modifications.

6.6.3 Global Optimisation

Having obtained sufficient information for setting up the design optimisation experiment, a global
optimisation is performed for obtaining rough solutions. The objectives of this optimisation study
are presented in Section 6.5, the constraints are the same as the ones defined in Section 6.2, and the
experiment is performed with the MOGA-II algorithm (see Algorithm 1).

Selecting Parameters to Optimise

The parameters chosen to be optimised in the global optimisation study are presented in Table 6.7.
In this experiment, two kinematic parameters, one inertia parameter and four spring parameters are
optimised, while the remaining design values are kept fixed. The importance of these parameters in
the design’s performance has been demonstrated in the sensitivity analysis study (see Section 6.6.2).
Parameter ‘d05’ is now optimised, which is the lever length between the 4-bar linkage and the main
actuator (see Figure 5.4). This part effectively controls how much torque can be generated at the hip.
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Name Description
Lower
Bound

Upper
Bound

Step

d2toe
length of foot,

ankle to toe tip [m]
0.22 0.26 0.001

d05 4-bar lever length [m] 0.1 0.11 0.0005

torso_cx
torso+ centre of mass

x coordinate [m]
0.36 0.44 0.001

as_Phi
ankle spring

arc angle [rad]
0.9 1.2 0.01

as_F25
force to compress

ankle spring 25% [N]
950 1150 2

ms_Phi
main spring

arc angle [rad]
1.6 1.9 0.01

ms_F25
force to compress

main spring 25% [N]
950 1250 2

Table 6.7: List of seven parameters to be optimised in Skippy’s mechanism. Step is the discrete
distance between successive values that the optimiser is allowed to take. The symbol ‘torso+’ means
the torso plus the crossbar, treated as a single rigid body.

Parameter Name 1st Layer (Mechanism) 2nd Layer (Behaviour)
Initial population SOBOL SOBOL + User-defined
Population Size 10 10

Number of Generations 40 100

Table 6.8: DOE parameters for the mechanism and the behaviour layers. SOBOL [27] DOE technique
is used to promote exploration of the search space by generating points with maximal distance between
them. ‘User defined’ means behaviours that were found from previous experiments and are known to
meet the objectives.

Design of Experiments

In this experiment a different DOE algorithm is selected to generate the initial population, which
consists of Design 268 (will now be called Design 0) and nine new designs. Specifically, the quasi-
random algorithm called SOBOL [27] is used. This algorithms seeks to fill the search-space in a
uniform way by generating samples that are maximally distanced from each other. In this way, the
clustering of solutions that happens with a random algorithm is avoided, and a more uniform sampling
of the search space is achieved. The DOE parameters are summarised in Table 6.8.

Mechanism Layer—the new seed (design 0) is used as a part of the initial population for exploitation
of the current available information, and an additional nine designs are generated via SOBOL for
exploring the design space.

Behaviour Layer—the optimal behaviour of design 0 for each performance objective is used as a
seed for the corresponding optimisation experiment of the second layer. In addition to that, nine more
behaviours are generated using the SOBOL technique.
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6.6.4 Evaluation criteria

To facilitate the comparison between designs, the performance objectives are grouped into four
categories as follows:

1. vertical hops (objectives 1–8),

2. travelling hops (objectives 9–11),

3. somersault (objective 12), and

4. balancing (objective 13).

For each of the first three categories an error measure and an energy measure are defined as follows:

ev = ∑
8
i=1 |ẏi − ẏTi| Ev = ∑

8
i=1 Ei

et = ∑
11
i=9 |ẋi − ẋTi|+ |ẏi − ẏTi| Et = ∑

11
i=9 Ei

es = |ẏ12 −6.3|+C|h12 −3.5| Es = E12 .

(6.4)

In these equations, ev, et and es are the error measures for the first three categories; Ev, Et and Es

are the energy measures; ẋi and ẏi are the CoM velocities at lift-off (from parameters ‘vcm1x’ and
‘vcm1y’) of the best behaviour for objective i; ẋTi and ẏTi are the target values for ẋi and ẏi; h12 is
the robot’s angular momentum at lift-off (from ‘hcm1’) of the best behaviour for objective 12; Ei is
the energy drawn from the battery during the execution of the best behaviour for objective i; and C
is a conversion factor to allow the addition of an angular momentum to a linear velocity. A suitable
value for C is 1/(mtotrfl), where mtot is the total mass of the robot and rfl is its radius of gyration in a
suitable flight-phase configuration. There is a range of possible values for rfl, depending on the hip
angle, including one that makes C numerically equal to 1. So we chose the value C = 1kg−1m−1.

In addition to the above, an overall error and energy measure is defined as follows:

eo = ev + et + es, Eo = Ev +Et +Es . (6.5)

And finally, the measure for balancing is the magnitude of the robot’s angular velocity gain, as it was
for the previous experiment. For this one measure, bigger is better. For all of the others, smaller is
better.

The total energy consumption is used as an extra evaluation criterion during the final selection,
but was not taken into consideration by the optimiser during the optimisation experiment.

6.6.5 Performance Comparisons

The optimisation framework evaluated 400 different Skippy mechanisms, out of which 34 (8.5%)
of them met the desired performance requirements. A design was considered successful if none of
the constraints were violated, and the optimisation objectives were within a tolerance of ±0.2 m/s or
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Initial Seed
Des. 0

Best Per-
formance
Des. 499

Hopping
Des.
1784

Somer.
Des.
1011

Travelling
Des. 2363

Balancing
Des. 2371

Eo 1005 J +1% −6.4% −5% −10.9% −1.7%
Ev 582 J +1.6% −3.4% −3.7% −12% −1%
Es 190 J +0.3% −12.3% −7.7% −7.2% −1.1%
Et 233 J 0% −9% −6.3% −11.2 % −5.7%
AVG 0.894 0% +1.9% +0.6 % −8.1% +3.2%
eo 0.561 m/s −23% +276% +171% +316% +243%

Table 6.9: Performance comparison between the initial optimisation seed (design 0) and five selected
designs discovered by the proposed framework. Each of the five discovered design scores are presented
as a percentage relative to Design 0 scores.

±0.2kgm2s−1 from the desired lift-off conditions. These are stricter tolerances than the ones in the
previous experiment.

The framework discovered designs that are significantly better than Design 0 in all categories.
These results demonstrate the capabilities of the proposed optimisation approach to efficiently explore
the trade-offs between several conflicting performance objectives. From the successful designs, six
are selected to be compared. These designs are: (1) the seed (0), (2) the best vertical hopper (1784),
(3) the best travelling hopper (2363), (4) the best somersaulter (1011), (5) the best balancer (2371),
and (6) design (499) with the highest performance (lowest error in performance objectives).

Figure 6.5 presents 6 scatter plots with all the successful designs. This figure shows plots with all
the performance criteria of interest, plotted against each other. The selected designs are coloured in
magenta, and the Pareto front in each plot consists of the designs that the black line passes through.
Table 6.9 shows the energy spent by the battery, AVG and error measure of the seed, as well as the
percentage variations from the seed of the five selected designs. For example, design 2363 consumes
10.9% less energy than the seed in its overall performance (Eo), but it does not perform well at
balancing, and is also under-performing in low hops. The best design at somersaulting (design 1011)
is 5% more energy efficient, better at balancing than design 0, and can achieve all objectives with a
relatively small error; however, it can only reach a hopping height of 2.85 m (7.48 m/s) after a landing
of 2 m (−6.3 m/s).

Design 499 achieves the performance objectives with a 23% percent less total error than the
seed, by having only a 1% variation in one of the design parameters, which is the main spring’s arc
angle. This has consequences for the design of the real robot. In experiments performed with a real
batch of fibreglass springs, it was discovered that a variation of 3% in stiffness exists between the
stiffest and the least stiff spring. Furthermore, one possible justification of the fact that design 499
requires more energy to achieve its objectives could be the fact that it achieves all of the desired
performance objectives with a very small error, while other designs did not come as close, such as the
best somersaulter in the high hop case. These results indicate that further investigation is required, and
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Figure 6.5: Plotting the error measure against energy consumption for each of the categories defined
in Section 6.6.4, for all the feasible designs. The selected optimal designs for each category, plus the
initial seed are coloured in magenta.
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Des. 0
Des.
499

Des.
1784

Des.
1011

Des.
2363

Des.
2371

Bounds

d2toe [m] 0.24 0.24 0.236 0.247 0.223 0.225 [0.22, 0.26]
d05 [m] 0.105 0.105 0.1055 0.105 0.1085 0.102 [0.1, 0.11]

torso_cx [m] 0.4 0.4 0.393 0.4 0.374 0.397 [0.36, 0.44]
as_Phi [rad] 1.02 1.02 1.2 1.02 0.95 0.92 [0.9, 1.2]
as_F25 [N] 1072 1072 1084 1106 1050 976 [950, 1150]

ms_Phi [rad] 1.9 1.88 1.82 1.89 1.74 1.69 [1.6, 1.9]
ms_F25 [N] 1184 1184 1188 1184 1074 1182 [950, 1250]

Table 6.10: Table with selected designs and their parameters with their respective bounds, as found by
the optimisation framework. Descriptions of the parameters can be found in Tables 5.2 and 5.6.

the conclusion is that refinement optimisation and robustness analysis should be strongly considered
before selecting which design to build.

Table 6.10 presents the values of the design parameters of the seed and selected designs. One
can see that the main spring’s force at 25% (‘ms_F25’) is almost exactly the right value for the
performance requirements. The remaining six parameters covered a large portion of the bounded
design space, which shows that the framework has adequately explored it. The ankle-spring and
main-spring arc angles vary within ranges of 0.28 rad and 0.21 rad, respectively; the length of the
foot varies within a 2.4 cm range; and the lever length of the 4-bar linkage varies within a 6.5 mm
range. The ankle spring’s force at 25% varies within a 130 N range; and the corresponding parameter
for the main spring varies within a 108 N range. However, in only one design is this last parameter
significantly different from Design 0, and that is the best travelling hopper (2363).

One reason that the framework did not discover designs with significantly better trade-offs
than the seed could be that the latter was already optimal for a very similar set of performance
objectives. In addition, besides the maximum hopping height, which was shown to be close to the
mechanism’s performance envelope, the rest of the performance requirements were decided based
on the performance of the seed. A more complete study that investigates also the optimality of
the hopping sequence could potentially yield a different outcome; however, this results in a higher-
dimensional search space, and, as explained in the Discussion Chapter, the study was constrained by
the very high computational cost and time for the models to execute, so time did not allow for this
experiment, which could be part of a future work.

6.6.6 Refinement Optimisation

Having obtained the results of a rough optimisation, a refinement optimisation is performed to discover
the true potential of a set of the discovered mechanisms that seem to be the most promising. Given
these mechanisms, an extra optimisation round is performed to discover the optimal performances of
the selected designs in each of the performance objectives—except the AVG, which remains constant
because the design parameters do not vary in this experiment.
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Parameter Name 1st Layer (Mechanism) 2nd Layer (Behaviour)
Initial population User-defined User-defined
Population Size 5 10

Number of Generations 0 200

Table 6.11: DOE parameters for the mechanism and the behaviour layers for the refinement optimi-
sation experiment. In this experiment the optimal behaviours of each design are sought, and hence
design parameters remain constant. ‘User defined’ means mechanisms that were found from previous
experiments and are known to meet the objectives.

Best Per-
formance
Des. 499

Hopping
Des.
1784

Somer.
Des.
1011

Travelling
Des. 2363

Balancing
Des. 2371

Eo [J] 1015 953 971 913 998
Eo ± [%] 0 +1.3 +1.7 +1.9 +1
eo [m/s] 0.451 0.795 0.916 1.194 0.853
eo ± [%] 0 −62 −40 −49 −55

AVG 0.894 0.91 0.899 0.821 0.922

Table 6.12: Performance comparison between the five selected designs after the refinement opti-
misation experiment. The percentage values show the difference between the refined and prior
performance.

DOE

The DOE parameters are summarised in Table 6.11. This experiment is a behaviour-only optimisation
study with the aim to identify the true potential of the selected designs. The set of examined designs
consists of the five selected designs presented in the previous section, and are listed in Table 6.10.

The initial behaviours of each objective are the optimal behaviours discovered in the global
optimisation step. For each design, and for each performance objective 10 behaviours are selected
and are used as the initial population set. This is an exploitation experiment so no randomly generated
designs are added.

Algorithm

In this step, two different algorithms were explored: 1) Matlab’s Interior Point algorithm [68], and
2) modeFrontier’s MOGA-II algorithm [27], which is explained in algorithm 1. The latter produced
better results, which are presented in the following section. A possible explanation for the fact that a
global optimisation algorithm performed better than a local optimisation algorithm in a refinement
experiment could be due to the potentially high roughness of the examined objective functions, which
results in multiple local optima.
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Results and Discussion

Table 6.12 summarises the results of the refinement optimisation experiment. The overall errors of
all the designs except design 499 were significantly reduced, which demonstrates the effectiveness
of this step. Design 499 still has the highest performance but showed very little improvement (close
to zero). This can be attributed to the fact that this design has a small difference when compared to
design 0 (the initial seed), whose behaviours were already refined and were used as a starting point
for the behaviour optimisation layer. More importantly, after this step all five designs can now achieve
the desired performance objectives with a small error margin. For example, design 1011, which could
achieve a 2.85 m (7.48 m/s) hop in the previous study, can now reach 2.99 m (7.656 m/s) after a 2 m
(−6.3 m/s) fall.

An interesting observation is the apparent inverse proportional relationship between energy
efficiency and performance. The results of Table 6.12 show that the overall error decreased and
the total energy spent by the batteries increased. This result shows that more precise and restrictive
behaviours require more energy to achieve, and hence more effort. One can also observe that the
design with the largest error value (design 2363) also spends the least amount of energy. This apparent
relationship between effort and performance objective accuracy requires further investigation; however,
this result is one of the reasons that energy consumption was not included as a performance objective
during the global optimisation study. If the above assumption is true, the optimiser would have
created a Pareto front that optimises the trade-off between energy consumption and objective accuracy;
something undesired because in this study high performance is preferred over energy efficiency.

Another explanation for this result could be that the required objectives are not the optimal ones
for the given mechanism. For example, in the majority of the objectives the robot is required to have
zero angular momentum at lift-off; perhaps the mechanism would perform significantly better if a
small amount of non-zero angular momentum was considered acceptable.

With a refinement optimisation the maximum potential of a mechanism is obtained; however, how
far away the result could be from the performance of the real robot, in the real world that is full of
imperfections and uncertainties? To answer this question a robustness analysis must be performed.

6.6.7 Robustness Analysis

A robustness analysis is performed to take into account imperfections in the real world. This is an
important step in the proposed design optimisation approach. As mentioned in Part I Section 4.5.6,
with this study the designer can examine and evaluate designs based on their robustness in expected
design errors (e.g., manufacturing errors) or inaccuracies in model parameters.

Methodology

The methodology described in Section 4.5.6 is applied for the robustness analysis and is summarised
as follows.
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Initial Designs Variables Robust Designs Distribution Sampling Algorithm
5 User-defined 15 50 Gaussian LHS

Name Description Standard Deviation (σi)
Kinematic Parameters and Limits

rtoe radius of toe [m] 0.0001
d2toe length of foot, ankle to toe tip [m] 0.0005
d05 4-bar lever length [m] 0.0001

Dynamic Parameters
torso_cx torso+ centre of mass x coordinate [m] 0.0003

4-bar Parameters
bar4_a length of 4-bar segment (in torso) [m] 0.0001
bar4_b length of 4-bar segment (in lever, body 6) [m] 0.0001
bar4_c length of 4-bar segment (in leg) [m] 0.0001
bar4_d length of 4-bar segment (follower, body 8) [m] 0.0001

Ankle Spring Parameters
as_Phi ankle spring arc angle [rad] 0.002
as_F25 force to compress ankle spring 25% [N] 10
as_L ankle spring rest length [m] 0.0005

Main Spring Parameters
ms_Phi main spring arc angle [rad] 0.002
ms_F25 force to compress main spring 25% [N] 10
ms_L main spring rest length [m] 0.0005

Ring Screw
effi ring screw efficiency 0.003

Table 6.13: Top table: summary of hyper parameters in the robustness optimisation experiment.
Bottom table: list of 15 parameters examined in the robustness analysis. Random samples are drawn
from 15 Gaussian distributions with means equal to each examined design’s parameter values, and
a standard deviation that represents expected errors that may appear in the real design. For each
examined design 50 random designs are generated using a Latin Hypercube Sampling algorithm
(LHS).

1. Select designs to evaluate from an existing Pareto front.

2. Identify parameters with uncertainty in the real world.

3. Define stochastic design variables and sampling algorithm.

4. Define objectives and constraints.

5. Run the optimisation.

Select designs to evaluate—the five selected designs presented in the previous section are studied.

Identify parameters with uncertainty—in this step the parameters to be included in the robustness
study are identified. These parameters are presented in Table 6.13. In addition to the seven parameters
that were examined in the global optimisation experiment (see Section 6.6.3), eight new parameters
are added for the robustness analysis. These parameters are expected to have random variations in the
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real world, and hence these effects should be examined. The source of uncertainty for each of these
parameters is explained below.

1. Spring force—given a batch of fibreglass springs, a series of tests was performed (see Sec-
tion 5.3.1). In these experiments we discovered that springs of the same batch may have a
variation up to 3% in stiffness between the stiffest and the least stiff spring.

2. Spring arc angle and length—these parameters have also been measured to have variations
between springs of the same batch, which can be quantified by the values presented in Table 6.13.

3. 4-bar segments—these parts are made of aluminium, which in general can be manufactured in
high precision; however, the 4-bar carries large forces of up to 3000 N, and hence the effect of
small variations in their lengths might have a significant impact. In addition, these parts (see
Figures 5.2 and 5.4) are held together with ball bearings, which have a small amount of radial
play.

4. Foot length and radius of the toe—the foot will also be manufactured from aluminium;
however, the part of the foot that is in contact with the ground will be covered by a layer
of high-friction rubber to prevent slipping, which may have a slight effect on the length and
curvature of the foot.

5. Torso CoM x coordinate—this parameter is crucial for both hopping and balancing (see
Section 6.6.2), and in the real robot it can only be estimated up to a certain precision; so
possible deviations of this parameters from its theoretical value should be examined.

6. Ring screw efficiency—this parameter was experimentally estimated, so in reality the actual
efficiency might be slightly different.

Define design distribution and sampling algorithm—to simulate and examine the effects of vari-
ations on the design’s performance a random distribution is defined around each examined design
parameter, and random samples are drawn from it. The sampling process produces random new
designs with expected variations on the vicinity of the original design. To verify the robustness of a
design several samples around an initial design are generated and evaluated.

A Gaussian distribution

Xi ∼ N (µi, σ
2
i ) =

1
σ
√

2π
e−(x−µi)

2
/

2σ2
i (6.6)

is defined for each examined design parameter Xi in Table 6.13, with a mean equal to the value of that
parameter for the examined design (see Table 6.10) and a standard deviation describing the expected
uncertainty of this parameter in the real world. Table 6.13 presents the design parameters and their
standard deviation. For each of the five designs 50 new designs are generated using a Latin Hypercube
Sampling algorithm [94].
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Define objectives and constraints—the designs are subject to the same constrains presented in
Section 6.2. The objectives also remain the same for this evaluation-only experiment; however,
instead of 13 objective values the output now is a set of 13 distributions (one for each performance
objective Table 6.5) for each of the five designs.

The aim is to obtain designs with low standard deviations in their objective values, or in other
words designs that are robust to random variations of the parameters presented in Table 6.13. It is up
to the designer to determine what would be the threshold between a valid and invalid robust design.

DOE

Designs—for robustness analysis the five selected designs presented in Section 6.6.5 were selected.

Behaviours—the optimal behaviours for each performance objective were discovered in the refine-
ment optimisation step, so they are used as an initial population in the robustness analysis study. The
aim of this study is to exploit available information rather than explore, so no random designs are
added in the initial population set. Each design has a different set of initial population behaviours
with 10 behaviours for each performance objective.

Results

Figures 6.6 and 6.7 show 12 box-and-whisker plots, which allow the visualisation of the degree of
dispersion (spread) and skewness in the data, and outliers. A plot is generated for each objective
(except the AVG) and contains one box-whisker for each of the five designs. These plots provide a
visual representation of the variations of the statistical samples (50 for each examined design). The
horizontal red lines in each box exhibit the median of the samples; each box length is the interquartile
range (IQR), which is the distance between the upper and lower quartiles (contains 50% of the
observations); the whisker’s length is determined by the variance of the data and is defined by the
values of the largest and lowest samples observed at 1.5 times the IQR; and red crosses represent
outliers. A robust design should have boxes and whiskers of short length and as small a number of
outliers as possible. Furthermore, a high performance behaviour should have an error-median value
close to zero.

The performance of each objective is defined by the following formula.

ei = |ẋi − ẋTi|+ |ẏi − ẏTi|+C|hi −hTi|. (6.7)

Where ei is the error measure; ẋi and ẏi are the CoM velocities at lift-off (from parameters ‘vcm1x’
and ‘vcm1y’) of the best behaviour for objective i; ẋTi and ẏTi are the target values for ẋi and ẏi; hi

(from ‘hcm1’) is the robot’s angular momentum at lift-off of the best behaviour for objective i; hTi

is the target value for angular momentum about the CoM at lift-off (is 0 for all objectives except
objective number 12, which is the triple somersault); and C is the conversion factor to allow the
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Figure 6.6: Box-whisker plots for all vertical hops (objectives 1–8) in Table 6.5. These plots summarise
the results of the robustness optimisation study. In each figure, each box-whisker represents the
dispersion and skewness of the 50 random designs generated around each of the five examined
designs.
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Figure 6.7: Box-whisker plots for all travelling hops (objectives 9–12) and the 2 m triple somersault
(objective 12) in Table 6.5. These plots summarise the results of the robustness optimisation study.

addition of an angular momentum to a linear velocity, which is described in Section 6.6.4. In the
examined case the standard deviation tolerance was set at 0.1 m/s for the desired lift-off conditions.
Designs that the standard deviation (STD) of all of their objectives is below the aforementioned value
are deemed successful.

From the five examined designs only one failed given the robustness evaluation criteria. Design
1784 (best hopper) has an STD value of 0.13 m/s, which violates the acceptable tolerance of 0.1 m/s.
One can also easily notice from the boxplots that this particular design has the highest median error
value in most of the objectives (7 out of 12) and high variability (long whiskers) in the triple somersault
and the halting hop (performance objectives 8 and 12). Design 499 has in most cases the lowest
median error value and low variance in most objectives, which demonstrates high robustness.

Design 1011 (best somersaulter) has an acceptable average median value and in a few cases such
as in the objectives 5 and 8 (the 3 m hop and the halting hop) has many outliers, an indication of
possible high variability, which is not desirable. The best balancing machine (design 2371) has also
an acceptable robustness performance; however, it has a below average performance in low hops
(objectives 1,2,7,8), with high median and STD values. Finally, the best traveller (design 2363)
demonstrates high robustness under the selected design parameter variations with low median and
STD values, and has only a few outliers.
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Based on the results of the robustness analysis design 499 (best overall performance) and design
2363 (best travelling performance) are shown to be robust to random variations in the selected design
parameters, which means that the real performance of the final design has a higher chance of being
more consistent under these variations.

Discussion

Skippy’s design and behaviours are modelled by more than 100 parameters, out of which 14 of them
were examined in this analysis. Other parameters that could have a significant influence on the robot’s
performance are the initial conditions of each hop, which are the linear velocity and the angular
momentum about the robot’s CoM. In reality these values will most probably never be exactly the
same as in the simulation, and might have small variations (e.g., the robot has a bit of positive angular
momentum). However, evaluating them will exponentially increase the number of simulations. To
address this issue, the main bottleneck of this approach must be dealt with, which is the simulation
execution time, a topic that is discussed in Chapter 7.

The results of this analysis also shed light into the performance difference between the initial seed
(design 0) and design 499 (best overall performance) (see Section 6.6.5), where it was shown that only
a 0.02 rad difference in the ankle curvature between two different designs can lead to a non-negligible
improvement in the overall performance. We now know that small acceptable variations in the
examined design parameters can result in significant, but acceptable alterations in performance. Based
on these results, we can expect slight variations in the robot’s performance with different parts or
robot modifications (e.g., when different springs of the same batch are used or by miss-calculating or
changing the torso’s CoM x coordinate).

Furthermore, the outcome of this experiment gives a deeper insight on the possible ramifications of
design imperfections on the final performance of the robot. For example, if Skippy is built according
to the specifications of design 499 and it is able to achieve only a maximum hopping height of 2.8 m
(instead of 3 m) it will not be a surprise since robustness analysis has shown that this is a possible
performance under imperfections in the examined design parameters, which can result in a lot less
wasted time during the experimental process (e.g., trying to improve the controller for achieving an
unfeasible performance).

6.6.8 Selecting the Best Design

In the previous section, it has been shown that designs 1011, 1784 and 2371 are not very robust
to certain design variations, even though they meet the performance objective criteria. So the final
candidates are designs 499 (best overall performance) and design 2363 (best travelling hopper). In
summary,

• both designs meet robustness criteria;

• design 2363 spends 10% less energy than design 499 to achieve the required performance;
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Figure 6.8: Skippy design in Creo CAD software according to the specifications of the selected
design (499). Left: closed hip configuration; right extended hip configuration. The main and ankle
fibreglass leaf-springs, the end stops, the ring screw nut and the crossbar are not presented.

• design 499 has a higher performance and achieved the objectives with 63% less error than that
of design 2363;

• design 499 has 8.8% higher AVG value than design 2363, which makes it a much better
balancing machine.

For the aforementioned reasons, design 499 is the final winner of this design optimisation study
because it demonstrates the best performance-robustness trade-off. Even though energy efficiency is
also considered in the final design selection process, performance is prioritised (in both balancing
and hopping), and for this reason design 499 is selected over design 2363, which is a more energy
efficient design.

Figure 6.8 shows an incomplete design (not yet finished) of the real Skippy according to the
specifications of design 499. The crossbar, the ankle and hip fibreglass spring, the end stops and
the ring screw nut are not presented. The links of the robot are made out of carbon fibre, which is a
lightweight and strong material. The blue and purple parts will be made of aluminium. The two Maxon
motors are visible (in grey); the top motor actuates the hip joint via the ring screw, and the bottom
smaller motor will actuate the crossbar via a capstan drive. Notice that most of the mass (batteries,
motors, electronics) is located at the end of the torso joint, which is called the head. Adjustment of
the distribution of these parts will allow to achieve the desired torso’s CoM x coordinate, an important
parameter for the robot’s performance.

6.6.9 Behaviours of the Best Design

In this section the optimal behaviours of design 499 are shown and several plots of various quantities
of the robot during these behaviours are presented and discussed. Specifically, voltage and current
profiles for all the performance objectives are presented, example plots of the ground reaction forces,
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Figure 6.9: Voltage and current profiles for increasing-height vertical hops. Top left: from rest to a
0.6 m hop; top right: from a 0.6 m to a 1 m hop; bottom left: from 1 m to a 2 m hop; bottom right:
from a 2 m to a 3 m hop.

angular momenta, generated torques/forces and energy flows. A visualisation of the 12 optimal
behaviours of design 499 is presented in Appendix A, where motions strips (screenshots) from the
simulation videos are presented.

To obtain the maximum physical performance and reach the performance envelope, the robot
must operate near its limits. To do that, Skippy must saturate its motor and push the mechanism to its
limits. This can indeed be seen in the voltage and current profiles of Designs 499. The 12 optimal
behaviours are presented in Figures 6.9, 6.10, 6.11, and 6.12. In the aforementioned graphs, the three
‘Vin’ signals are drawn in the order that they appear in the legend. This means that the blue curve is
visible only where speed limiting is in effect, because otherwise it is obscured by the red curve, and
that the red curve is visible only where current limiting is in effect, because otherwise it is obscured
by the orange curve.

In more detail, seven out of the 12 behaviours reach the ring screw’s speed limit; seven out
of 12 behaviours reach voltage saturation; and three behaviours reach current saturation. These
results indicate that Design 499 reaches its performance envelope in most of the desired performance
objectives.
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Figure 6.10: Voltage and current profiles for decreasing-height vertical hops. Top left: from a 3 m to a
2 m hop; top right: from a 2 m to a 0.6 m hop; bottom: from a 0.6 m to a 0.01 m hop.

Vertical Hops

Figure 6.9 presents all of the increasing-height hops required to reach the 3 m hop (objectives 1–4
in Table 6.5). In the 3 m hop (bottom right graph) the robot spends about 40% of its time in voltage
saturation and 5% in current saturation. The effect of the ring screw’s speed limit is visible at about
0.19 seconds for about 12% of the behaviour’s time, showing not only the motor but the ring screw
mechanism is also driven to its limits. In the initial hop from rest to a 0.6 m hop, the robot also
struggles to meet the objective since it reaches the ring screw’s speed limit twice, and also spends 50%
of the behaviour in voltage saturation and 5% in current saturation. This extreme behaviour however
cannot be kept up for a long time. In reality this will cause the motor to overheat. To prevent this, real
Skippy will be equipped with sensors to monitor the temperatures of the motors, and just like any
athlete, when Skippy overexerts itself it will need some time to rest. The robot can be seen to have an
easier time during the two intermediate hops (top right and bottom left figures) indicating that the
mechanism could perform better in these two objectives.

In addition to the voltage and current profile, the ground reaction forces (grf), and the pulling
force of the nut in the 3 m hop are presented in Figure 6.13 (left figures). In both of these plots a
bump can be observed. This bump is the result of the mechanism hitting its hip end stop during this
behaviour. Ideally, hitting the end stops should be avoided due to the energy losses. However, results
from earlier experiments have shown that a variety of strategies exist for achieving the objectives,
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Figure 6.11: Voltage and current profiles for travelling hops. Top left: starting a travelling hop from a
vertical hop of 1 m; top right: repeated travelling hop of 1 m height and 2.3 m distance; bottom: from
a travelling hop to a vertical hop of 1 m.

meaning that this issue is not a decisive factor. Finally, it can also be observed that a real Skippy
would slip for a very short amount of time at both the beginning and the end of both stance phases,
because the tangential component of the ground-reaction force is outside the friction cone. In the
force profile of Figure 6.13 (top left) one can also observe the pulling force reaching very close to the
thrust bearings’ limit of 1500 N, which is a further indication that the 3 m behaviour is pushing the
mechanism to its limits.

Figure 6.10 shows the voltage and current profiles of the three decreasing height hops from a 3 m
hop to rest. From these hops it can be easily observed that the robot does not have a hard time meeting
the given performance objectives. Specifically, the ring screw speed limit is the only limit reached,
but only for a short amount of time in the final two hops; the motor limits are not reached in any of
these behaviours.

Travelling Hops

The voltage and current profiles of the travelling hops are presented in Figure 6.11. In these behaviours
the ring screw’s speed limit is reached in addition to some voltage saturation. However, despite this
fact, the behaviours have a large margin from the constraint limits and no end stops are hit, meaning
that there is more potential to the mechanism’s travelling speed. This is expected though, because these
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Figure 6.12: Voltage and current profiles for the 2 m repeated vertical hop (left), and the 2 m and
3.5 kgm2s−1 triple somersault (right).

objectives were added only for versatility purposes, and not to push the mechanism to its limits. In fact,
in subsequent studies, that are not presented in this thesis, mechanisms capable of reaching a travelling
speed of 5.3 m/s (19 km/h) in a series of successively increasing travelling speed hops were discovered.

Repeated Hop

Figure 6.12 (left) shows the voltage profile to achieve a 2 m repeated hop with zero angular momentum
and horizontal velocity. During this behaviour no limit was reached but the hip end-stop was hit. In
addition, all the constraints (Section 6.2) were far from their limits. This indicates that the mechanism
has more potential in this performance objective too, which could be explored in a future study.

Somersault

The 2 m triple somersault, together with the 3 m vertical hop, are the robot’s most demanding
behaviours. In Figure 6.12 (right) one can observe a voltage saturation during about 40% of the
behaviour, and a current saturation during about 14% of the stance phase. Furthermore, the hip end
stop was hit. Specifically, in Figure 6.13 (right) we can observe that Skippy hits the end stop less
hard than in the corresponding behaviour for a 3 m hop. In addition, the optimal behaviour for the
somersault comes close to most of the constraint limits, including the maximum thrust bearing force
(top right of Figure 6.13).

Figure 6.14 shows four plots of the torques generated at the ankle joint and the hip end stop, and
angular momentum about the torso’s CoM for the 3 m hop (top figures) and the 2 m triple somersault
(bottom figures). In the 3 m hop case the hip end-stop was hit more than two times harder than in the
somersault case, which can be observed from the bumps in the left figures. An interesting observation
is the zero-crossing of the ankle’s joint torque, which happens in the somersault but not in the 3 m
hop. As mentioned in Section 5.3.1, the spring-loaded ankle affects the direction and magnitude of
the grf, and the aforementioned result shows that this behaviour requires more sophisticated control
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Figure 6.13: Pulling force of the ring screw nut (body B10 in Figure 5.4), and ground reaction forces
(grf) of Skippy’s most demanding behaviours. Left: pulling force (top), and grf (bottom) during the
3 m vertical hop; right: pulling force (top) and grf (bottom) during the 2 m triple somersault.
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Energy Flows
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Figure 6.15: Stacked Energy flow during the 0.228 second stance phase of a 7.7 m/s (3 m) hop. The
energy losses due to damping and friction can be observed from the bottom curves. During this stance
phase the hip end stop was hit (‘hip es damp’ shows the energy lost to the damping effect, and ‘hip es
spr’ is the stored elastic energy, which is returned to the mechanism as it bounces off the end-stop).

than the 3 m hop. Specifically, in the somersault the ankle is being extended rather than being flexed.
This is caused by the leg trying to kick backwards in order to increase its angular momentum before
lift-off. This effect can be observed in the bottom right figure, where one can notice the very rapid
increase of angular momentum during the same time that the ankle starts extending. Moreover, in the
3 m hop (top right figure) we can observe how the robot crouches during the first milliseconds of the
behaviour, and then kicks upwards to achieve the desired lift-off velocity.

Energy

A better overall view of what is happening to the system during the stance phase can be observed
through the energy flows shown in Figures 6.15 and 6.16. In the energy flow of the high hop (Figure
6.15) we can observe the energy loss due to the collision with the hip end-stop, which is much less in
the somersault (Figure 6.16). Not hitting the end stop means better and smoother control, which can
be observed by the smoother curves produced during the somersault stance phase. The yellow (KE)
and the two large green areas (‘main spring’ and ‘ankle spring’) illustrate the conversion of initial
kinetic energy to stored elastic energy of the springs, back to the final kinetic energy to propel the
robot for the desired objective. We can also observe the losses due to the ring screw friction and joule
heating of the motor winding (‘motor joule’). To give an idea of these values the kinetic energy to
propel the robot into a 3 m hop is ∼ 90 J and the energy lost due to heating of the motor winding is



6.6 Hopping, Travelling, Somersaulting and Balancing 165

Energy Flows

0.05 0.1 0.15 0.2

time (s)

0

50

100

150

200

250

e
n
e
rg

y
 (

J
)

ankle es damp

hip es damp

ankle spr loss

main spr loss

ring screw fric

motor fric

motor regen

motor joule

ankle es spr

ankle spring

hip es spr

main spring

PE

rotor KE

KE

ankle spring

hip es spr

KE

motor joule

main spring

ring screw fric

Figure 6.16: Stacked Energy flow during the 0.247 second stance phase of a 6.3 m/s (2 m) triple
somersault. In this figure the energy flows are much smoother compared to Figure 6.15, which can be
largely attributed to the fact that the hip end-stop was not hit very hard.

∼ 70 J. This is a significant amount of lost energy and not taking it into consideration can result in
discrepancies between simulation and reality.

Figure 6.17 shows the battery energy spent during the optimal behaviours for each performance
objective in Table 6.5. The most energy-demanding behaviour is the 2 m triple somersault, which
requires 190.2 J, followed by 153.2 J for the 3 m hop. Travelling hops require a moderate amount
of energy to be spent, while the least energy is spent by the two hops to reduce the hopping height
from 2 m to 0.6 m and then to rest. Interestingly, the initial hop does not follow the pattern of the
other vertical hops, where energy increases/decreases with hopping height, but consumes more energy
than its successive increasing height hop (the 1 m hop). This also demonstrates the fact that building
up energy is a difficult task, since the springs are unloaded at the beginning of the first hop. In that
particular hop the optimiser chose to straighten up, and launch with an upward momentum; however,
a better strategy for an initial hop could be to straighten up a little, then crouch rapidly, and then
suddenly launch into an initial hop while the CoM has significant downward momentum.
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Figure 6.17: Energy spent by the batteries in each of the 12 optimal behaviours of design 499. Each
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Chapter 7

Discussion

This chapter discusses some of the limitations and possible improvements to the proposed optimi-
sation approach and design study. Obtaining accurate models of the robot’s components could be
a cumbersome and challenging task; and the reason is that deep understanding of the underlying
examined systems is required, and sometimes, sophisticated and expensive equipment and software.
However, by doing so, one can reduce the gap between simulation and reality, which can lead to
robots that demonstrate unprecedented behaviours, and in fewer design cycles.

The bottleneck of this approach is the simulation cost. For the case-study of this thesis, three dif-
ferent programs were used for modelling, simulating and co-optimising the design and the behaviours
of Skippy. These three programs (Matlab, Simulink, and ModeFrontier) introduced large execution
overheads with Simulink, being the worst offender. To be more specific, in the final optimisation
experiment presented in Section 6.6, 400 Skippy designs were examined, and for each design 12
behavioural optimisation studies were performed. In each behaviour optimisation experiment, 1000
behaviours were explored (Table 6.8), so we get a total of 4,800,000 simulations. The machine used
had 16 GB of RAM and used an Intel Core i7-4820k 8×3.7GHz. The execution time for the design
study was approximately 12 days, which is 1,036,800 seconds. So the software was performing
approximately 4.6 simulations per second. However, a rough count of the number of arithmetic
operations needed to perform one simulation suggests that we should have been getting closer to 100
simulations per second, implying that overheads accounted for something like 95% of total execution
time. The single biggest overhead is Simulink’s simulation initialisation phase, which takes far longer
than the execution phase.

The lack of efficiency is the main reason why the presented optimisation experiments (Sections
6.5 and 6.6) had a relatively small generation length and population size. However, the choice of
seven mechanism design parameters is comparable with other works in the literature. For example,
Ha et al. [46] allow up to seven design parameters to vary in their study; Saar, Giardina and Iida [92]
optimise four; and Spielberg et al. [104] optimise eight. Moreover, in the design study of Section 6.6,
22 parameters are being optimised, because there are also 15 behaviour parameters. As for the set of
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performance objectives, the only significant omission is an objective to recover from a triple backward
somersault back into a vertical hop.

Slow execution time could be mitigated by the following actions: (1) software platforms with
higher efficiency can be used (i.e., less overheads), (2) software in a more efficient language can
be implemented (e.g., C instead of Matlab), or (3) harness the power of cloud-computing, for extra
computational power. Some, if not all of these solutions require extra resources, but are not restrictive;
particularly, cloud-computing is gradually becoming more accessible due to an increase in popularity
over the past years.

Although the dynamic model is highly detailed and realistic in most respects, there is one item
that is not realistic: the kinematic constraint that forces the foot to roll without slipping on the ground
regardless of the contact forces. One improvement that could be made to the model is to replace this
constraint with a realistic model of compliant frictional contact between the robot and the ground.
A compliant model is required because Skippy will have a soft rubber foot and even softer crash
protection foam. This would allow to model and study the bouncing and slipping that occurs when
the foot lands, as well as the slipping just before lift-off. It would also allow the study of flight-phase
behaviours. Furthermore, the case-study is limited to a plane. Performing a full 3 D study will result
in a more complete study and will allow to examine more complicated behaviours, such as pirouettes.
Moreover, the performance envelope in other behaviours such as travelling hops could be explored. In
fact, Skippy designs were discovered in later studies than the one presented in this thesis, that can
reach and maintain travelling speeds of 5.3 m/s (hops of 1.7 m height and 6.26 m distance), which
corresponds to 19 km/h, in a series of successive travelling hops, starting from rest.

Other directions for future work would be to apply the proposed optimisation approach to the
design and behaviour co-optimisation of other types of robots, such as soft robots. Finally, an
important step would be to validate the effectiveness of the proposed approach by building Skippy,
and demonstrating the behaviours that it is designed to perform.



Chapter 8

Conclusion

This thesis presented an approach for design and behaviour co-optimisation of mobile robots. It was
divided into two parts. The first part presents a 2-layer optimisation framework that seeks the best
design (Layer 1), and the optimal behaviours to achieve a set of performance requirements (Layer
2); and a proposed methodology to perform the optimisation experiments. In the second part, the
optimisation philosophy is applied to a specific example, which is a high-performance balancing and
hopping monopedal robot.

The proposed optimisation approach is based on realistic models of the robot’s hardware and
limitations, and its behaviours. As a result, the gap between simulation and reality is reduced, and the
study of designs that can utilise the current technology safely and towards its maximum potential can
be performed. The optimisation framework is designed so that the inherent relationship between a
robot and its performance requirements is exploited via the co-optimisation of design and behaviour.
The proposed optimisation methodology aims to facilitate the robot design process by: (1) identifying
the most critical components and parameters of the robot’s design, (2) obtaining optimal designs
by maximising the qualitative information of the design-space (i.e., use the minimum amount of
resources), (3) apply qualitative evaluation criteria for the selection of the design with the best trade-off
between the performance requirements, and (4) meet realistic design criteria, that will allow the final
design to be manufactured according to available resources and be robust to imperfections of the real
world (e.g., manufacturing errors).

The effectiveness of the optimisation approach was shown via a case study on a monopedal
hopping and balancing robot. In this study, the robot’s performance envelope in vertical hops was
sought, which includes a 3 m hop, in addition to several other demanding and conflicting performance
requirements, which are: travelling hops, a high balancing ability, and a 2 m triple somersault. The final
result is a design that will be built, and can theoretically achieve a large set of demanding performance
objectives. This design has been shown in simulations to be able to reach its hardware’s maximum
potential safely, and was selected according to performance and robustness criteria. In particular,
the latter criterion means that the design’s performance will not be significantly deteriorated in the
presence of expected uncertainties in the real world. Furthermore, with the proposed methodology
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important design parameters of the examined agile monopedal robot and their effects/trade-offs on its
performance were identified, which can give insights in the design process of legged robots.

The aim of this research is to show that a systematic robot design optimisation study can lead to
versatile robots that display impressive behaviours with fewer design iterations. In comparison to the
state of the art and other studies in the literature, this work examines the effect of multiple realistic
components and limitations, that have been largely neglected, and investigates designs that are capable
of achieving multiple demanding behaviours, which conflict with each other. These aspects have not
been properly investigated in previous works, and the results of this research indicate that they should
not be neglected, and play a crucial role for designing mobile robots that are robust, versatile, and can
achieve high-physical performance.

The robot examined in the case study of this thesis has no obvious practical use; however, the
findings of this thesis demonstrate that the proposed optimisation approach can be used for the design
of highly capable robots that can achieve a plethora of behaviours, which can allow them to assist
and support humans in various aspects of their life. The aforementioned findings suggest that a new
approach for designing mobile robots can be arrived at.
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Appendix A

In this part visualisations of the stance phase of the selected design (499) (see Section 6.6.9) are
presented so the reader can get a better understanding of the behaviours that the robot is trying to
achieve. For each performance objective, its optimal behaviour is simulated and rendered using the
‘showmotion’ graphics display of the ‘spatial_V2’ Matlab library [34]. Each strip displays five frames
starting right after the plastic collision of the foot with the ground, and ends at the moment the foot
lifts off the ground. In the motion strips the reader can see details about the various optimal behaviours
including their duration, initial joint positions (hip and ankle) and final lift-off configuration. The
animation does not show details of the mechanism such as springs, electronics motors, or the ring
screw nut; however, the kinematics (including the 4-bar linkage) are accurate. In addition, the CoM of
the torso (the blue body) is rendered as a blue sphere on the body.

One can observe that in all vertical hops, and the transition from the travelling hop to a vertical
hop (Figures A.1–A.8 and A.11), that the torso’s CoM is very close to the foot contact point with the
ground during lift-off, which is not the case in the initial travelling hop (Figure A.9), the continuous
travelling hop (Figure A.10), and the somersault (Figure A.12).
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