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Abstract

In this paper a complete 3D contact model is
presented. This model has nonlinearity in de-
termining both normal and friction forces. A
new nonlinear normal force model is introduced
and the differences between this new model and
previous ones are described. Also, the charac-
teristics of this model are discussed and com-
pared with the classical models and empirical
results. For calculating the friction force, a new
nonlinear model which is able to calculate pre-
sliding displacement and viscous friction is pre-
sented. It is shown that this model allows us to
keep track of all the energy in the system and
therefore, supports an energy audit.

Also, the rolling motion of a sphere on a compli-
ant ground plane is simulated, and the results
are presented. Rolling motion is an integral
part of simulating the general 3D motion of a
robot’s foot while in contact with the ground.

1 Introduction

Robotic systems usually make contact with their envi-
ronment during execution of their tasks. So modeling
the contact is an inevitable part of every study in this
field. In particular, in the case of legged robots, modeling
the contact between the robot’s feet and the ground is
one of the most important parts of the study. Also, it is
desirable to find the amount of energy dissipated during
the contact because minimizing the energy consumption
might be one of the objectives of designing legged robots.

As we know, two major forces appear in each contact:
normal and friction forces, and so it is desirable to have
a complete model for the contact which is able to model
both normal and friction forces. In this paper, we look at
the contact models which are mentioned in the literature
and try to provide a full 3D model for calculating contact
forces and determining the amount of dissipated energy.

For modeling the normal force, there are two general
types: rigid and compliant models [Gilardi and Sharf,

2002]. However, there are two major problems with rigid
models: first, some cases arise in which no solution or
multiple solutions exist, and second, energy conserva-
tion principles may be violated during frictional impacts
[Gilardi and Sharf, 2002]. On the other hand, the ad-
vantage of compliant models is that by using them, the
normal force will be a function of local indentation, and
it would be possible to compute the normal force during
the contact.

Some researchers have used the compliant model for
determining the normal force between a sphere and a
compliant plate, instead of the robot’s foot and the
ground, and have derived some equations for calculat-
ing the normal force [Hunt and Crossley, 1975], [Marhe-
fka and Orin, 1999], [Lankarani and Nikravesh, 1990]

and [Falcon et al., 1998]. Almost all of them have used
Hertz’s theory [Johnson, 1977] to predict the normal
force with different types of damping terms. In this
study, we are going to use a different approach, and of
course end up with a new compliant contact model which
is different from those classical methods.

Also, many efforts have been made by researchers
in modeling the friction force, such as Dupont et al.
[2000], Haessig and Friedland [1991], Bliman and Sorine
[1995], Dupont et al. [2002], Dahl [1968] and deWit
at al. [1995], most of which are reviewed by Olsson et
al. [1998]. In fact, friction is a more complicated phe-
nomenon than contact, and many effects are included in
friction. Armstrong-Hélouvry et al. [1994] have intro-
duced a nearly complete model which is called the seven
parameter friction model. This model is able to capture
almost all friction effects, like pre-sliding displacement,
coulomb+viscous+stribeck curve, frictional memory and
rising static friction. However, this model is too compli-
cated and hard to implement in simulation. Also, there
are not enough experimental results for determining the
parameters.

In this paper, we are going to introduce a simpler
model for friction to capture most common effects like
presliding regime and coulomb+viscous friction. In our



model, we have chosen to consider the nonlinearity in the
nature of the contact between a sphere and the ground.
So, we use a nonlinear friction force instead of linear one
in the pre-sliding period.

The purpose of this paper is to look at the contact
between a rolling sphere and the compliant ground with
focus on the energy dissipation. In modeling the robot’s
foot with a sphere or a union of spheres, there is a pos-
sibility for the sphere to roll over the ground during the
contact. So, we must study the rolling motion of the
sphere instead of considering the sphere as a point mass.

In section 2 of this paper, the new nonlinear contact
model for normal force is described and compared with
the classical methods. A nonlinear model for friction
force is presented, and its characteristics are discussed
in section 3. In section 4, the results of simulation of
a rolling sphere on the compliant ground are demon-
strated.

2 Nonlinear Normal Force Model

A non-linear equation for the normal force between a
sphere and the ground was first introduced by Hunt and
Crossley [1975]. They modeled the ground as a nonlinear
spring-damper pair at the contact point, and proposed
a general form for the normal force, F , exerted on the
sphere by the ground, as

F = kzn + λzpżq , (1)

where z is the deformation of the ground, ż is the rate
of deformation, k and λ are the coefficients of the spring
and damper, respectively, and n, p and q are constant
parameters.

Hunt and Crossley [1975], Lankarani and Nikravesh
[1990], and Marhefka and Orin [1999] have set the values
of these parameters as n = 3

2 (to get similar results to
the Hertz’s theory [Johnson, 1977]) and p = 3

2 and q = 1
(to be able to determine the value of λ with respect to
k, conveniently) for the contact force between a sphere
and a plate:

F = kz
3

2 + λz
3

2 ż . (2)

In this paper, we adopt an alternative model in which the
ground is considered to contain a uniform distribution of
infinitely many non-linear spring-damper pairs, so that
the ground as a whole can be characterized by a stiffness
and a damping coefficient per unit area. According to
this model, the normal force is given by

f = fK + fD , (3)

where fK and fD are the forces due to the spring and
damper, respectively, and are given by

fK =

∫ z

0

A(ξ)KA(z − ξ) dξ (4)

and

fD =

∫

A(z)

DA(ζ(A)) ż dA, (5)

where KA(z) and DA(z) are the stiffness and damping
coefficients per unit area, A(z) is the area of contact
expressed as a function of z, and ζ(A) denotes the local

deformation at the area element dA. Figure 1 shows how
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Figure 1: Sideview of Contact Area

the contact area is calculated for a sphere of radius r.
We define the contact area to be the area of undeformed
ground that makes contact with the sphere, so we have

A(z) = πl2 = π(2rz − z2) = 2πrz(1 − z

2r
) . (6)

Assuming that z ≪ 2r, and taking into account that
A(z) must be zero for all z < 0, we arrive at the following
equation for the contact area:

A(z) =

{

2πrz if z ≥ 0
0 otherwise.

(7)

In order to conform with Hertz’s theory, KA(z) should
be chosen as

KA(z) =
E∗

2π
√

r
z−

1

2 , (8)

and E∗ is determined by

1

E∗
=

1 − ν2
1

E1
+

1 − ν2
2

E2
(9)

where E1 and E2 are the moduli of elasticity, and ν1

and ν2 are the poisson ratios of the two contacting sur-
faces [Johnson, 1977]. Substituting Eqs. (7) and (8) into
Eq. (4) gives

fK =

{

4
3E∗

√
r z

3

2 if z ≥ 0
0 if z < 0

}

= Knz
3

2 (10)

where Kn is a nonlinear spring coefficient that depends
only on the mechanical properties of the contacting sur-
faces, the radius of the sphere and the sign of z (i.e., Kn

is defined to be zero if z < 0).
Now we assume that DA(z) has the same relation with

z as KA(z) does. So we can write

DA(z) = α z−
1

2 (11)



where α is a constant parameter. Substituting Eqs. (7)
and (11) into Eq. (5) gives

fD =

{

4πrαz
1

2 ż if z ≥ 0
0 if z < 0

}

= Dnz
1

2 ż , (12)

In analogy with Eq. (1), we can now write our normal
force model equation in the form

f = Knz
3

2 + Dnz
1

2 ż . (13)

2.1 Coefficient of Restitution

According to experiments reported by Goldsmith [1960]

on measuring the coefficient of restitution for a contact
between spheres and thick plates, the coefficient of resti-
tution should start from a certain value at high velocities
and tend to unity at low impact velocities.

Figure 2 shows the values of the coefficient of resti-
tution at different impact velocities calculated by our
model, the classical non-linear model (i.e., Eq. (2)), and
the linear model (which is introduced in §11.8 of [Feath-
erstone, 2008]). In every case, gravity is set to zero.
(With nonzero gravity, impacts below a threshold ve-
locity do not result in a bounce, implying a coefficient
of restitution equal to zero.) This figure indicates that,

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Impact Velocity (m/s) 

 C
oe

ffi
ci

en
t o

f R
es

tit
ut

io
n Linear Model

Our Model

Classical Model

Figure 2: Coefficient of restitution vs. impact velocity
calculated by three different models

for the linear model, the coefficient of restitution is con-
stant at all velocities. However, for the nonlinear contact
models, this coefficient decreases with increasing impact
velocity, with different shapes. This difference can be
observed more clearly by changing the scale of the hori-
zontal axis to a logarithmic scale. Figure 3 indicates that
our model represents a linear relation between the coeffi-
cient of restitution and the logarithm of impact velocity
for different values of damping coefficient, Dn, which is
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Figure 3: Coefficient of restitution vs. logarithm of im-
pact velocity calculated by the classical model and our
model

in contrast with curves that we obtain from the classical
model in the logarithmic scale.

In Figure 4 we have compared the calculated values of
the coefficient of restitution by our model with empiri-
cal results ([Goldsmith, 1960] and [Kuwabara and Kono,
1987]) in a logarithmic scale. By looking at Figure 4 we
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Figure 4: Coefficient of restitution vs. logarithm of im-
pact velocity. Dashed curves show the experimental
results and solid curves the calculated values by our
model. Results are for the contact between (A) a steel
sphere (r = 1.27cm) and a cast iron plate, (B) a steel
sphere (r = 1.65cm) and a cork plate, (C) a steel sphere
(r = 1.27cm) and a brass plate, and (D) a steel sphere
(r = 1.27cm) and a cold-worked lead plate.

can conclude that our model fits the empirical results
more accurately than the classical model, although the



fit is better in cases (B) and (D) than (A) and (C). In
cases (A) and (C), the measured values still show a lin-
ear behaviour but their slopes are a bit different from
our calculated one.

2.2 Bouncing Simulation

Model Modification for Bouncing

We regard the ground as a first-order dynamical system
containing springs and dampers, but no mass. Therefore,
if the sphere strikes the ground with enough velocity to
bounce, then our model predicts that the sphere will
lose contact with the ground before z has fully returned
to zero. To avoid having to simulate the recovery of
the ground plane after the sphere has lost contact, we
accelerate the recovery by adjusting the damping force,
as shown below, so that the ground plane rises at the
same speed as the sphere, and therefore reaches z = 0
at the same time as the bottom of the sphere. This
modification does not introduce any kind of error into the
model, except one (see Figure 5): if the sphere bounces
twice in quick succession, so that the ground has not
fully recovered from the first bounce at the time of the
second landing, then the modification fails to model the
second landing and bounce correctly.

The modified model is defined by Eqs. (3), (10) and
the equation below, which replaces Eq. (12):

fD = max(Dnz
1

2 ż,−fK) . (14)

This equation ensures that f in Eq. (3) is never negative.

a) c) b) 

Figure 5: a) end of first bounce b) ground is recovering
itself c) re-collision with the ground with undetermined
shape.

Normal force vs. Deformation Plot

Figures 6 and 7 show the normal force vs. ground de-
formation for a sphere with radius r = 1.65cm, mass
m = 154gr and initial velocity of 1m

s , which are simu-
lated by the classical model and our model, respectively.
By comparing these two diagrams, it can be seen that

in Figure 7 the normal force reaches zero before z, in-
dicating that our model is able to predict correctly that
contact ends before the ground has fully recovered to
zero deformation.
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Figure 6: contact force vs. ground deformation for k =
8.5 × 106, λ = 3.1 × 106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Ground Deformation (mm)

N
or

m
al

 F
or

ce
 (

N
)

Compression

Decompression

Figure 7: contact force vs. ground deformation for Kn =
8.5 × 106, Dn = 3.1 × 103

Simulation

The bouncing motion of a sphere with radius r = 1.65cm
and mass m = 154gr is studied in this section. Figure 8
shows the height of the lowest point of the sphere which
is released without initial velocity from initial height of
10cm, measured from the bottom of the sphere, and Fig-
ure 9 shows the normal force exerted by the ground on
the sphere.

Figure 10 shows the contact force exerted on the
sphere at the first bounce. It can be seen from this
figure that the force is continuous and starts from zero
at the beginning of the contact and comes back to zero
smoothly. Also it is not sticky (negative) during the
contact.
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Figure 8: Vertical position vs. time for a bouncing sphere
(Kn = 8.5 × 106, Dn = 3.1 × 103)
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Figure 9: Normal force vs. time for a bouncing sphere
(Kn = 8.5 × 106, Dn = 3.1 × 103)

2.3 Energy Audit

In addition to calculating the contact force, we also im-
plemented an energy audit part in our simulink model
for keeping track of all energy in the system. On the
basis of energy conservation principle, at any instant of
the simulation, the summation of the amount of energy
which is dissipated and the amount of energy which is
stored in springs and the body itself must be constant:

EDissipated + ESprings + EBody = constant. (15)

The only dissipative component in this model is the
damper, and the amount of energy dissipated by the
damper is

ENDamp =

∫ t

0

fD żdt . (16)
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Figure 10: Enlargement of the first bounce in Figure 9

Also, the energy stored in the normal spring can be cal-
culated as

ENSp =

∫ t

0

fK żdt =

∫ t

0

Knz
3

2 żdt =
2

5
Knz

5

2 . (17)

And finally, the amount of energy of the body can be
written as the sum of potential and kinetic energy, which
is

EBody = mgh +
1

2
mċ2 , (18)

where h is the height, and ċ is the velocity of the center
of mass (COM).

Figure 11 shows the total energy, dissipated energy
and stored energy for the bouncing sphere. It can be
seen that we have a record of the amount of damped
and stored energy at all simulation time.
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Figure 11: Energy vs. time plot for a bouncing sphere
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Figure 12: Friction model incorporating presliding
through local deformation of a tangential spring and
damper, and sliding via a variable-strength clutch that
yields at the edge of the friction cone

3 Nonlinear Friction Force Model

In this section, a model for predicting the friction force
during the contact period is derived. It is, essentially,
a nonlinear, 2D version of the friction model in §11.8
of [Featherstone, 2008]. A physical interpretation of the
model is shown in Figure 12. It consists of a spring, a
damper and a clutch. The clutch is designed to slip when
the ground reaction force reaches the edge of the friction
cone. Therefore, the yield force of the clutch depends
on the normal force. The major difference between this
model and previous friction force models in the litera-
ture, is the modeling of stiction force in the presliding
regime with a non-linear equation.

To work out the correct friction force, the first step is
to work out what the friction force would be if the clutch
velocity were zero (i.e., the clutch is not slipping). We
call this force fstick, and calculate it from

fstick = −ktu − btVsph , (19)

where u is the tangential deformation of the ground at
the contact point, Vsph is the tangential velocity of the
bottom point of the sphere, and kt and bt are tangen-
tial stiffness and damping coefficients, respectively. As
the tangent plane is two-dimensional, fstick, u and Vsph

are all 2D vectors. Similar to the normal spring-damper
pair, the coefficients kt and bt are functions of the contact
area (A(z)), and the tangential stiffness and damping co-
efficients per unit area (KA(z) and DA(z)). Assuming
that the contacting surfaces are isotropic, kt and bt are
calculated by

kt =

∫

A(z)

KA(ζ(A)) dA, (20)

and

bt =

∫

A(z)

DA(ζ(A)) dA, (21)

(cf. Eqs. (4) and (5)). So, the stiction force can be writ-
ten as:

fstick = −Ktz
1

2 u − Dtz
1

2 Vsph , (22)

where Kt and Dt are given by

Kt = 2E∗
√

r (23)

and
Dt = 4πr α . (24)

The correct friction force will either be fstick, if it
lies inside the friction cone, or else a force lying on the
friction cone and having the same direction as fstick. We
call the latter fslip, and calculate it from

fslip = fstick × µFn

|fstick|
, (25)

where µ is the coefficient of friction and Fn is the con-
tact normal force. To avoid a divide-by-zero error, this
equation is only calculated if |fstick| > µFn. The correct
friction force, Ff , is now given by

Ff =

{

fslip |fstick| > µFn

fstick otherwise.
(26)

A viscous term can be incorporated into this model as
follows:

fslip = fstick × µFn

|fstick|
− CV Vclutch , (27)

which replaces Eq. (25). In this equation, CV is the
viscous friction parameter and Vclutch is the slipping ve-
locity between the sphere and the ground.

3.1 Energy Audit

Energy dissipation due to friction force is the summation
of the amount of dissipated energy by means of tangen-
tial dampers when the sphere is sticking on the ground,
and the amount of energy dissipation by the clutch when
the sphere is slipping.

Energy dissipation by the damper is calculated by

ETDamp =

∫ t

0

Dtz
1

2 u̇2 dt , (28)

and energy dissipation by the clutch is

EClutch =

∫ t

0

Ff · Vclutch dt (29)

where Vclutch is determined by

Vclutch = Vsph − u̇ , (30)

in which u̇ would be calculated by

u̇ =
Ff + Ktz

1

2 u

−Dtz
1

2

, (z > 0). (31)



In the sticking regime, the value of fstick calculated by
Eq. (22) ensures that

u̇ = Vsph ⇒ Vclutch = 0 , (32)

which means that the clutch does not dissipate energy.
Also, the amount of energy stored in the tangential

spring is

ETSp =

∫ t

0

Ktz(t)
1

2 u u̇ dt . (33)

4 Simulation of a Rolling Sphere

Equation of Motion

The motion equations for a rolling sphere on the ground
in 3D space are

f = mc̈ (34)

and
nC = Īc ω̇ + ω × Īc ω , (35)

where f is the resultant force acting on the sphere, nC

is the moment around the center of the sphere, c is a
vector giving the position of the center of mass, and ω

is the angular velocity of the sphere. The velocity of the
contact point is calculated by

VP = ċ + ω ×−−→
CP , (36)

in which
−−→
CP is a vector from the COM of the sphere to

the contact point.
Also, for a rolling sphere, the energy of the body is

calculated by

EBody = mgh +
1

2
mċ2 +

1

2
ω · Īc ω . (37)

Results

Using MATLAB simulink, a simulation is done for a
sphere with radius r = 1.65cm, mass m = 154gr, ini-
tial height of the center of mass 10cm, initial velocity
in the x and y directions = 0.5m

s , µ = 0.2, CV = 0.1,
Kn = 8.5 × 106, Dn = 3.1 × 103, Kt = 12.75 × 106,
Dt = 3.1 × 103.

Figure 13 shows the friction force in the x direction.
Because of the initial conditions, friction forces in both x

and y directions are the same. Figure 14 shows the fric-
tion force in the x direction at the first bounce. It can be
seen from this figure that the friction force is completely
continuous and smooth. It is also shown that the con-
tact starts with slipping of the sphere on the ground and
after that as the normal force approaches its maximum
value (according to Figure 10), the sphere sticks on the
ground for less than 1ms and then again starts slipping
until the end of the contact.
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Figure 13: Friction force in x direction vs. time
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Figure 14: Friction force in x direction vs time for the
first bounce of a sphere with radius 1.65cm which is re-
leased from the initial height 10cm

Figure 15 shows the x components of c and Vsph (i.e.,
the position of the COM and the velocity of the contact
point). Looking at this figure, we can see that after 0.5s,
the velocity is zero but the position is still increasing,
which means that the sphere is rolling on the ground.

Figure 16 shows the total, damped, and stored energy
during the rolling motion. As it should be, the amount of
total energy is constant during the simulation and does
not change.

5 Conclusion

A complete full 3D nonlinear contact model which is able
to calculate both normal and friction forces is presented
in this paper. A new nonlinear normal force model which
is introduced in this paper is different from previous ones
in the exponent of the ground deformation in the damp-
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Figure 15: Position of the COM and velocity of the con-
tact point in x direction
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Figure 16: Energy vs time for a rolling sphere

ing term. The characteristics of this new model are also
described. By comparing our results with the empirical
results of the contact between a sphere and a plate, we
showed that our model can predict values of the coef-
ficient of restitution more accurately than the previous
classical ones.

Also, a new nonlinear friction force model in two di-
mensions was presented in this paper, which is able to
calculate pre-sliding displacement and viscous friction.
This model uses a nonlinear equation for computing the
friction force in stiction period.

Finally, rolling motion of a sphere on the ground was
simulated and the results presented. As a non-spherical
foot can be represented by a union of spheres, by using
this model, it is possible to simulate the 3D motion of a
robot’s foot on the ground.
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