
Balancing and Hopping Motion
Control Algorithms for an

Under-actuated Robot

Morteza Azad

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

June 2014

c© Morteza Azad 2014

Declaration

This thesis is the result of my own original work under the guidance and supervision
of Doctor Roy Featherstone during the period of my PhD degree at the Australian
National University. Most of the results in this thesis have been published in refereed
journals and at international conferences. These results include:

1. M. Azad and R. Featherstone, Modeling the contact between a rolling sphere
and a compliant ground plane. Australasian Conference on Robotics and Automa-
tion (ACRA 2010), Brisbane, Australia, 1-3 December 2010.

2. M. Azad and R. Featherstone, Angular momentum based controller for bal-
ancing an inverted double pendulum. 19th CISM-IFToMM Symposium on Robot
Design, Dynamics and Control (ROMANSY2012), Paris, France, 12-15 June 2012.

3. M. Azad and R. Featherstone, Balancing and hopping motion of a planar hop-
per with one actuator, IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6-10 May 2013.

4. M. Azad and R. Featherstone, A new nonlinear model of contact normal force,
accepted November 21, 2013 to be published in the IEEE Transactions on Robotics.

The idea of using a decomposed bend-swivel controller to control the 3D balancer
robot, which is discussed in chapter 5, was proposed by Dr. Roy Featherstone. He
also invented the idea of using a constant velocity joint in the knee joint of the 3D
balancer to decouple its motion instantaneously into bend and swivel motions.

Morteza Azad
22 June 2014

iii

to my wife and parents

Acknowledgments

This thesis would not have been possible without the support and assistance of many
individuals and some organizations. I would like to thank all those who have made
this thesis possible.

First and foremost, I would like to express my very great appreciation to my
supervisor Dr. Roy Featehrstone. I am so proud to had the chance to work with Roy
from whom I have learnt a lot. I am very thankful to him for his incredible support,
bright ideas and great supervision during my candidature.

I would like to express my gratitude to Dr. Jochen Trumpf and Prof. Robert
Mahony for their comments and support. In particular, I am very grateful to Jochen
for spending hours to review all my thesis. Also I would like to thank the Australian
National University and the School of Engineering for their financial support.

During my time as a student I had a chance to visit one of the best robotics
laboratory in Italy. I would like to thank Dr. Roy Featherstone and Prof. Thushara
Abhayapala, the director of the School of Engineering, who provided this visit for
me. I would also like to thank Prof. Darwin Caldwell, Dr. Claudio Semini, Dr.
Jonas Buchli and the students and the staff of the Department of Advanced Robotics
at the Istituto Italiano di Tecnologia, Genova, Italy, who supported me with a very
welcoming environment during the visit.

I would like to thank all my fellow students and the staff of the School of En-
gineering who provided me with a pleasant working environment at the Australian
National University.

Last but not least, I would like to gratefully thank my family and friends who
were kindly supporting me during my candidature. This thesis would not be possible
without the continuous love and support of my family. My special thanks go to my
wife, Sahba, who has been very supportive, patient and encouraging during these
years.

vii

Abstract

The main contribution of this thesis is a new and simple angular momentum based
control algorithm for balancing an under-actuated planar robot. The proposed con-
troller is able to stabilize the robot at any unstable balanced configuration and to
control the robot to follow motion trajectory commands. This controller is also capa-
ble of balancing the robot on a rolling contact. A modified version of the controller is
used to control the robot during a single hop motion. The proposed planar controller
is then used as a part of a 3D balancing controller for a spatial under-actuated robot.
The 3D control algorithm, which is based on the angular momentum of the robot,
can balance the robot within any vertical plane and also rotate the robot from a verti-
cal plane to any other one. Performance of the control algorithm in planar balancing,
spatial balancing and planar hopping motions is demonstrated by simulation results.
Although hopping motion of a spatial under-actuated robot is not considered in this
thesis, it is shown in simulations that, starting from an upright configuration, the 3D
controller is able to move the robot within any arbitrary vertical plane. Therefore,
by confining the robot’s motion to a vertical plane, the robot is potentially able to
perform hopping motion in 3D using the same algorithm that is proposed for planar
hopping motion.

Another major contribution of this thesis is a new nonlinear model for the con-
tact normal force. This new model accurately predicts the measured values of the
coefficient of restitution between spheres and plates of various materials. The new
contact model is used in this thesis to model the contact between the robot’s foot and
the ground during a hopping motion.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Background . 1

1.1.1 Hopping Robots . 2
1.1.1.1 Classifications of Hopping Robot Mechanisms 3
1.1.1.2 Planar Hoppers . 4
1.1.1.3 Spatial Hoppers . 6

1.1.2 Balancing Robots . 7
1.2 Thesis Outline . 8

2 Modelling the Contact between a Sphere and the Ground 9
2.1 Contact Normal Force . 9

2.1.1 The New Model . 10
2.1.1.1 Equivalent Radius . 13
2.1.1.2 Implementation Algorithm 14

2.1.2 Coefficient of Restitution . 15
2.2 Friction Force Model . 18
2.3 Example: Rolling Motion of a Sphere . 20

2.3.1 Equations of Motion . 20
2.3.2 Results . 20

2.4 Summary . 22

3 Balancing Control Algorithm for an Under-actuated Planar Robot 25
3.1 Robot Model and Motion Equations . 26
3.2 Balancing Controller . 26

3.2.1 Modifying the Controller . 27
3.3 Stability Analysis . 29
3.4 Gain Calculations . 32
3.5 Following a Trajectory . 33
3.6 Simulations . 34

3.6.1 Perfect Modelling . 34
3.6.2 Considering Model Imperfections 37
3.6.3 Imperfections that Influence the Balanced Configuration 41

3.7 Comparison to other Control Algorithms 42

xi

xii Contents

3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 45
3.8.1 Wheelfoot 2D Balancer . 48
3.8.2 Camfoot 2D Balancer . 50

3.9 Summary . 54

4 Hopping Motion of an Under-actuated Planar Robot 57
4.1 Robot Model and Motion Equations . 58
4.2 Control Strategies . 60

4.2.1 Trajectory-tracking Controller . 60
4.2.2 Launching Phase . 61
4.2.3 Flight Phase . 65
4.2.4 Landing and Rebalancing . 66

4.3 Discussion on Simulation Results . 67
4.4 Summary . 70

5 Balancing Control Algorithm for a 3D Under-actuated Robot 71
5.1 Robot Model . 72

5.1.1 Kinematics of the Spherical Passive Joint 72
5.1.2 Kinematics of the Knee Joint – A Double Cardan Joint 74

5.2 Definitions . 76
5.3 Bending and Swivelling Motions . 77

5.3.1 Kinematics of Bend and Swivel . 79
5.4 Motion Equations . 80
5.5 Control Algorithm . 82
5.6 Simulation Results . 84
5.7 Summary . 96

6 Conclusion 99
6.1 Thesis Contributions . 99
6.2 Future Work . 100

List of Figures

1.1 Raibert’s 2D hopper (reproduction of Figure 2.1 in [Raibert, 1986]) . . . 2
1.2 Raibert’s 3D hopper (reproduction of Figure 3.5 in [Raibert, 1986]) . . . 3
1.3 Classifications of hopping and running robot’s mechanisms 4
1.4 Berkemeier’s planar hopper with one actuator 5
1.5 Frames of a hopping gait of Berkemeier’s hopping robot (reproduction

of Figure 8 in Berkemeier and Fearing [1992]) 6

2.1 Contact between a sphere and a plate (a) local deformation, (b) contact
area . 11

2.2 Contact between two spheres . 13
2.3 a) end of first bounce b) ground is recovering c) re-collision with the

ground with undetermined shape. 15
2.4 Coefficient of restitution vs. impact velocity calculated by three differ-

ent models . 16
2.5 Coefficient of restitution vs. logarithm of impact velocity calculated by

the Hunt/Crossley model and the new model for a range of model
parameters . 16

2.6 Coefficient of restitution vs. logarithm of impact velocity. Dashed
curves show the experimental results and solid curves the calculated
values using the new model. Results are for the contact between (A)
brass spheres (R1 = R2 = 1.5cm), (B) a steel sphere (R = 1.27cm) and a
cast iron plate, (C) cork spheres (R1 = R2 = 1.66cm), (D) a steel sphere
(R = 1.65cm) and a cork plate, (E) a steel sphere (R = 1.27cm) and
a brass plate, and (F) a steel sphere (R = 1.27cm) and a cold-worked
lead plate. 17

2.7 Coefficient of restitution vs. logarithm of impact velocity. Cases (A) to
(F) are described in Fig. 2.6. 17

2.8 Friction model incorporating pre-sliding through local deformation of
a tangential spring-damper pair . 18

2.9 Vertical position of the lowest point of the sphere 21
2.10 Contact normal force during the rolling motion of the sphere 21
2.11 Enlargement of the first bounce in Fig. 2.10 22
2.12 Friction force in x direction during the rolling motion of the sphere . . 23
2.13 Enlargement of the first bounce in Fig. 2.12 23
2.14 Position of the CoM and velocity of the contact point in x direction . . . 24

3.1 2D balancer robot model and its parameters 26

xiii

xiv LIST OF FIGURES

3.2 Robot’s straightening motion—perfect modelling 35
3.3 Robot’s crouching motion—perfect modelling 36
3.4 Trajectory-tracking performance of the robot—perfect modeling 36
3.5 Effect of different pole locations on a straightening motion 37
3.6 Block diagram of the system with model imperfections 40
3.7 Robot’s straightening motion with imperfections 40
3.8 Robot’s crouching motion with imperfections 41
3.9 Trajectory-tracking performance of the robot with imperfections 42
3.10 Robot’s straightening motion with imperfections and encoder bias . . . 43
3.11 Robot’s crouching motion with imperfections and encoder bias 43
3.12 Robot’s straightening motion—perfect modelling 44
3.13 Robot’s straightening motion with 1◦ bias in the passive joint’s encoder 45
3.14 Models and parameters of a curved-foot 2D balancer robot 46
3.15 straightening motion of the wheelfoot balancer 50
3.16 Crouching motion of the wheelfoot balancer 51
3.17 A clothoid plot with ρ = 0.1 . 52
3.18 The shape of the foot of the camfoot balancer 53
3.19 Radius of curvature of the camfoot balancer at the contact point 53
3.20 Straightening motion of the camfoot balancer 54
3.21 Velocity of the contact point (ṡ) during the straightening motion of the

camfoot balancer . 55
3.22 Crouching motion of the camfoot balancer 55
3.23 Velocity of the contact point (ṡ) during the crouching motion of the

camfoot balancer . 56

4.1 Planar hopper model, (a) generalized coordinates, (b) parameters 58
4.2 Performance of the trajectory-tracking controller in following a sine-

wave function . 61
4.3 Horizontal location of the CoM of the robot with respect to its foot

during the launching phase . 63
4.4 Normal force and the ratio between the friction force and normal force

during the launching phase . 64
4.5 Horizontal location of the foot during the flight phase 66
4.6 Translational state variables and their derivatives during flight phase . 67
4.7 Footprint of the CoM of the 2D hopper during a complete hop 68
4.8 Velocity of the CoM and control torque during a complete hop 69

5.1 Schematic diagram of the 3D balancer robot 72
5.2 Coordinate frames of the passive joint . 73
5.3 Schematic diagram of a double Cardan joint 74
5.4 Schematic diagram of the constant velocity joint at the knee 74
5.5 Coordinate frames of the knee joint . 75
5.6 (a) robot and bisector planes, bend and swivel angles and swivel axis,

(b) bend and swivel axes and swivel angle 78

LIST OF FIGURES xv

5.7 (a) vertical robot plane, robot plane, tilt angle and robot plane angle,
(b) angle of the lower body, bend angle and balance error 78

5.8 Swivelling motion of the robot . 79
5.9 Joint angles in a straightening motion of the 3D balancer–1st example . 87
5.10 Bend angle in a straightening motion of the 3D balancer–1st example . 87
5.11 Tilt angle in a straightening motion of the 3D balancer–1st example . . 88
5.12 Balance error in a straightening motion of the 3D balancer–1st example 88
5.13 Joint angles in a straightening motion of the 3D balancer–2nd example 89
5.14 Bend angle in a straightening motion of the 3D balancer–2nd example . 89
5.15 Tilt angle in a straightening motion of the 3D balancer–2nd example . . 90
5.16 Balance error in a straightening motion of the 3D balancer–2nd example 90
5.17 Joint angles in a straightening motion of the 3D balancer–3rd example . 91
5.18 Bend angle in a straightening motion of the 3D balancer–3rd example . 91
5.19 Tilt angle in a straightening motion of the 3D balancer–3rd example . . 92
5.20 Balance error in a straightening motion of the 3D balancer–3rd example 92
5.21 Joint angles in a crouching motion of the 3D balancer–1st example . . . 93
5.22 Bend and robot plane angles in a crouching motion of the 3D balancer–

1st example . 93
5.23 Joint angles in a crouching motion of the 3D balancer–2nd example . . 94
5.24 Bend and robot plane angles in a crouching motion of the 3D balancer–

2nd example . 94
5.25 Bend angle in crouching, rotating and straightening motions of the 3D

balancer . 95
5.26 Robot plane angle in crouching, rotating and straightening motions of

the 3D balancer . 96
5.27 Robot in the robot plane . 98

xvi LIST OF FIGURES

List of Tables

3.1 Model parameters used in the simulations 34
3.2 DC motor parameters . 39

5.1 Relationships between coordinate frames at the passive joint 73
5.2 Relationships between coordinate frames at the knee joint 75
5.3 Initial conditions of the robot for the straightening motions (q1 = 0

and q6 = q4) . 85

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Balancing is always a crucial problem in legged robots. This problem is much more
challenging when it comes to monopod robots which have only one leg. It is also
an indispensable and the most important part of the hopping motion of a monopod
robot. This thesis concerns the problems of balancing and hopping motions of a
planar and a spatial under-actuated monopod robots with a minimum possible ratio
between the number of actuators and degrees of freedom (DoF).

1.1 Background

The robot that is considered in this study is in fact a monopod robot which is a kind
of legged robots with only one leg. Although legged robots are much more difficult
to control, rather than wheeled ones, they are more applicable in real environments.
They are usually capable of moving in rough terrains much better than wheeled
ones and also have more mobility and flexibility in moving. Having legs instead
of wheels, allows them to move in environments with discontinuous support like a
flight of stairs or rungs of a ladder.

In general, walking and running are the two main types of locomotion for legged
robots. The difference is that during walking there is always at least one leg, support-
ing the robot’s body, in contact with the ground whereas running includes a flight
phase in which the robot is not in contact with the ground. Hopping is essentially a
special case of running. Hopping robots have only one leg or if they have more than
one leg then all legs do the same thing at the same time (like a kangaroo).

Hopping motion of a monopod can be simply generalised to running motion
of a biped or a multi-legged robot. Comparing with walking robots, hopping and
running robots usually have simpler dynamic models and control algorithms. Also,
studying hopping motion can be regarded as a basic study on legged robots. So the
literature is reviewed with focus on hopping robot mechanisms and their control al-
gorithms. Also balancing control algorithms of under-actuated robots are considered
because of the necessity of balancing the robot as a part of its hopping motion.

1

2 Introduction

1.1.1 Hopping Robots

Raibert was a pioneer researcher in the field of hopping robots. More than twenty
years ago, he and his colleagues at CMU proposed a control algorithm for a planar
hopping robot [Raibert and Brown Jr, 1984] that amazed robotics and control com-
munity because of its simplicity. They verified their proposed control algorithm by
implementing it on a real monopod planar hopper. The robot showed good per-
formance at hopping in place, hopping at various speeds, and leaping over small
obstacles. Fig. 1.1 shows a schematic diagram of the hopper which is built by Raibert
and his colleagues. Raibert’s planar hopper consists of a torso and a leg connected to
each other by a hinge-type hip joint. The leg, which is in fact an air cylinder, acts like
a spring (springy leg) and the torso carries sensors, valves and actuators [Raibert,
1986]. This hopper, which has five motion DoF, is controlled by using two actuators
one in the hip joint and the other in the leg.

Figure 1.1: Raibert’s 2D hopper (reproduction of Figure 2.1 in [Raibert, 1986])

Raibert claimed that control of such a monopod hopping robot can be decom-
posed into three separate parts, which are controlling the hopping height, regulating
the forward speed and correcting the attitude of the torso. Raibert further developed
his control algorithm and successfully controlled the running motion of a biped robot
[Raibert, 1986].

Raibert then extended his planar control algorithm to 3D and built a spatial mono-
pod robot and controlled its hopping motion [Raibert et al., 1984]. Fig. 1.2 shows a
schematic diagram of Raibert’s spatial hopper. Like the planar version, it has a torso
(carrying sensors, valves, etc.) and a leg (pneumatic cylinder). This mechanism has
nine DoF, and is controlled by using three actuators (two in the hip joint and one in
the leg).

§1.1 Background 3

Figure 1.2: Raibert’s 3D hopper (reproduction of Figure 3.5 in [Raibert, 1986])

Raibert also studied running on four legs [Raibert et al., 1986], gymnastics with
a biped robot [Hodgins and Raibert, 1990] and somersault of a biped in 3D [Playter
and Raibert, 1992].

1.1.1.1 Classifications of Hopping Robot Mechanisms

After Raibert, many researchers studied dynamics and control of hopping and run-
ning robots using different kinds of mechanisms which are reviewed in [Sayyad et al.,
2007]. Fig. 1.3 shows a classification of these mechanisms based on their dimensions
and leg mechanisms. In general, a planar or a spatial hopping (or running) robot
consists of a torso and a leg (or two or more legs). The leg could be either a Raibert-
style leg (i.e. a link containing a prismatic joint which is connected to the torso by
a revolute joint) or a leg with a knee (i.e. two links connected to each other by an
actuated revolute joint). These kinds of legs are referred as “prismatic” and “knee”
legs in this chapter, respectively.

For 1D mechanisms there is only one possible motion which is hopping at a place.
Some researchers looked into this type of mechanism to study vertical motion of the
robot and control its hopping height [Li and He, 1990; Vakakis et al., 1991; Michalska
et al., 1996; Harbick and Sukhatme, 2001a; Fernandes et al., 2009].

4 Introduction

Mechanisms

1D 2D 3D

prismatic passive prismatic knee-leg prismatic knee-leg

Figure 1.3: Classifications of hopping and running robot’s mechanisms

1.1.1.2 Planar Hoppers

Most of the studies on hopping robots are focused on planar robots. A few of them
have considered passive prismatic leg hopping robots. These robots have either pas-
sive prismatic and revolute joints by using passive springs [Ahmadi and Buehler,
1995, 1997], or a passive prismatic joint and a compliant revolute joint [Hyon and
Emura, 2004b; Ahmadi and Buehler, 2006].

Some of the studies, in the category of prismatic leg mechanisms, include de-
signing and controlling a hopping machine [Rad et al., 1993], proposing a peri-
odic hopping motion controller [M’Closkey and Burdick, 1991, 1993], introducing a
new energy efficient controller for the hopping motion [François and Samson, 1998],
studying flight phase control [Li and Montgomery, 1990; Ur-Rehman, 2005], for-
ward velocity control [Schwind and Koditschek, 1995], forward velocity control on
rough terrain [Cherouvim and Papadopoulos, 2009] and height control [Harbick and
Sukhatme, 2001b], analyzing stability of different controllers [Altendorfer et al., 2004;
Ankaralı and Saranlı, 2010] and proposing new torso mechanisms on a prismatic leg
mechanism [Iida et al., 2002; He et al., 2008]. Also there have been a few studies on
controlling running motions of planar prismatic biped robots [Raibert, 1986; Hyon
and Emura, 2004a; Abdallah and Waldron, 2007, 2009].

Comparing with prismatic leg hoppers, knee-leg ones have more complicated dy-
namics and therefore they are more difficult to control. However, their similarities
to human legs and also their simple mechanisms (to design and build) have encour-
aged some researchers to work on this type of hopping robot [Vermeulen et al., 2003;
Fujimoto, 2004; Takahashi et al., 2006; Ohashi and Ohnishi, 2006; Sung and Youm,
2007; He and Geng, 2009]. Studying hopping motion of knee-leg robots can also help
better understanding of human-like motion which might be useful to make faster
and more agile humanoid or legged robots.

The most advanced study on knee-leg hopping machines is recently accomplished
by Grizzle and his colleagues at the University of Michigan and Carnegie Mellon

§1.1 Background 5

University [Poulakakis and Grizzle, 2007, 2009b,a]. They proposed a hybrid zero dy-
namics controller for hopping motion of a knee-leg robot. They also designed and
built a robot, which is called “Thumper”, and experimentally verified their proposed
control algorithm. Then they extended the controller to control running motion of
a biped knee-leg robot [Grizzle et al., 2009]. They built a biped version of thumper,
which is named “Mabel”, and successfully implemented the running control algo-
rithm on the robot. Running with biped knee-leg robots have been studied by some
other researchers as well [Chevallereau and Aoustin, 2001; Chevallereau et al., 2005;
Morris et al., 2006; Shimizu et al., 2006; Amagata et al., 2008].

Among the studies on planar knee-leg hoppers, the work which is done by Berke-
meier and Fearing [1998] is fundamentally different from other ones in this category
in the sense of the ratio between the number of actuators and DoF of the robot.
Berkemeier and Fearing [1998] introduced a four DoF hopping mechanism, which
was in fact a knee-leg mechanism without a torso, and proposed a control algorithm
for its sliding and hopping motions using only one actuator in the knee joint.

A schematic diagram of the hopping robot mechanism that they used in their
studies is shown in Fig. 1.4. Their proposed mechanism consists of two links which
are connected to each other via an actuated revolute joint. This joint is referred as
the knee joint in rest of this thesis. The actuated joint could also be considered as
a hip joint connecting a leg to a torso. The tip of the lower leg acts as a foot and it
is the only point that makes contact with the ground. Configurations of the robot
is characterized by its generalized coordinates which are x1 and y1 (horizontal and
vertical coordinates of the foot), θ1 (angle between the lower link and vertical) and θ2

(angle between the links).

actuated
joint ���, ����������

Figure 1.4: Berkemeier’s planar hopper with one actuator

Berkemeier and Fearing divided the hopping control problem into two parts:
stance phase control and flight phase control. In the stance phase, if the robot is
not sliding on the ground, the dynamics of the hopper are identical to those of a
two DoF inverted double pendulum robot with one degree of under-actuation. To
control the robot in the stance phase, they designed a controller to balance the robot
[Berkemeier and Fearing, 1999] which was able to tolerate a little sliding (it presents
small disturbances to the system) and maintain its balance while it accelerates its
center of mass (CoM) upward. They used this controller to oscillate the robot to
obtain enough energy for taking off the ground by tracking a prescribed trajectory
during stance phase. In the flight phase, they found a desired trajectory for the

6 Introduction

hop and derived a controller to track that trajectory during the flight. Their control
strategy in the flight phase was to rotate the lower leg, an integral number of times,
to enable the robot to land in the same configuration as it took off the ground. They
were able to show a good performance of sliding and hopping motions of the robot
in simulation. Fig 1.5 shows the frames of their robot’s hopping gait.

Figure 1.5: Frames of a hopping gait of Berkemeier’s hopping robot (reproduction of
Figure 8 in Berkemeier and Fearing [1992])

After Berkemeier and Fearing’s work, there have been a number of studies on
posture control of the same robot during its flying motion [Mita et al., 2001; Hattori
et al., 2004; Xin et al., 2004]. The most remarkable work among them is done by
Grizzle et al. [2005]. They introduced a nonlinear control algorithm for a general case
of under-actuated planar mechanical systems with one degree of under-actuation
during stance and flight phases. They showed ballistic motion of a knee-leg hopper
with initial angular momentum in simulation.

1.1.1.3 Spatial Hoppers

After Raibert’s 3D hopper [Raibert et al., 1984; Raibert, 1986; Playter and Raibert,
1992], there have been only a few studies on 3D hoppers with a prismatic leg mech-
anism [Seipel, 2005; Seipel and Holmes, 2005a,b, 2006; Wu and Geyer, 2013].

In the category of spatial knee-leg robots, there are several of them that can hop,
run or walk. They usually have many DoF and also many actuators [Kajita et al.,
2007b,a; Kawamura and Zhu, 2006; Park and Kwon, 2003; Cho and Oh, 2008, 2009].
The problem with this kind of robots is that they are clumsy, slow, heavy and ineffi-
cient in the sense of energy consumption.

Unfortunately, there has not been any study on knee-leg 3D hopping robots with
a minimum possible number of actuators to DoF ratio. In fact, inspired by the work of
Berkemeier and Fearing [1998] (and also Raibert’s 3D hopper), this thesis is aiming
to propose a solution for the hopping motion of such robots. Such a 3D knee-leg
hopping robot would have eight DoF with only two actuators. The lower leg of the
robot would have full six DoF in the space and the upper leg would be attached to

§1.1 Background 7

the lower one by a two-DoF actuated joint. This thesis introduces a control algorithm
which is able to balance the robot and more importantly to confine its motion to an
arbitrary vertical plane. Therefore, the problem of its hopping motion in 3D will be
simplified to the planar hopping motion which is well-studied in this thesis.

1.1.2 Balancing Robots

Studying balancing motion control is an unavoidable part of a study on hopping
motion specially in the case of knee-leg hopping robots. The knee-leg hopper that is
studied in this thesis, which is the same as the one that is proposed by Berkemeier
and Fearing [1998], is in fact an inverted double pendulum robot. Balancing control
problem of such a robot with one degree of under-actuation is first considered by
Hauser and Murray [1990]. They proposed a non-linear controller for balancing the
acrobot (acrobatic robot). The acrobot is an inverted double pendulum robot which
consists of two bodies connected to each other by an actuated revolute joint (knee
joint). The lower body is attached to the ground by a passive revolute joint. Balancing
of the acrobot has been studied by some other researchers as well [Olfati-Saber and
Megretski, 1998; Berkemeier and Fearing, 1999; Olfati-Saber, 2000, 2002; Yamakita
et al., 2002].

Balancing motion of the acrobot is also investigated by some researchers as a part
of its swinging-up motion control. The swinging-up controller moves the robot from
its downward stable configuration via a series of swings and makes it balance at
its upward unstable configuration. Some researchers linearized the system about its
upright balanced configuration and used an LQR controller for the balancing part
[Spong, 1994, 1995; Brown and Passino, 1997; Xin and Kaneda, 2001; Mahindrakar
and Banavar, 2005; Lai et al., 2005; Inoue et al., 2007]. However, some others used a
different approach for the balancing part of the swinging-up motion controller. Nam
et al. [2002]; Yonemura and Yamakita [2004] proposed an output zeroing controller
for balancing the acrobot. Their proposed controller uses an output function which
is defined by the angular momentum and one other new state. To work out the value
of the torque, they had to calculate the third derivative of the angular momentum.
This approach has been used by Okawa et al. [2009]; Kawaguchi and Yamakita [2011]
to balance a bicycle or a bike robot on its rear wheel.

Berkemeier and Fearing [1999] introduced a controller based on zero dynamics
for trajectory tracking of the acrobot. They found a class of interesting feasible tra-
jectories for the acrobot and achieved theoretically accurate trajectory tracking per-
formance using their proposed controller. They also used a simple linear feedback
controller to balance the robot in its upright configuration.

Grizzle et al. [2005] considered the general case and designed a nonlinear con-
troller for mechanical systems with one degree of under-actuation. Their output
function becomes identical to the one that mentioned in [Olfati-Saber and Megretski,
1998; Olfati-Saber, 2000, 2002; Nam et al., 2002; Yamakita et al., 2002; Yonemura and
Yamakita, 2004] for the acrobot case. This approach also needs to work out the third
derivative of the angular momentum.

8 Introduction

1.2 Thesis Outline

The thesis consists of six chapters including the first chapter (i.e. introduction).
Chapter 2 considers the contact between a sphere and the ground and proposes

a new non-linear model to calculate the contact force. The contact model consists
of a normal force model and a friction force model. The normal force model differs
from previous models in the literature by a single term (the damping term). This
small difference in the model results in a substantial difference in its performance
compared to previous models. Simulation results show that only by using the new
normal force model (not the previous ones), the calculated coefficient of restitution
between spheres and plates fits the empirical data for a variety of materials.

Chapter 3 studies the balancing control problem of a planar under-actuated robot.
The robot is in fact an inverted double-pendulum robot with one degree of under-
actuation. The stability analysis of the controller shows that it is able to balance the
robot in any unstable but controllable balanced configuration. Also it is shown in
simulation that the proposed controller can follow motion trajectory commands with
reasonable accuracy. Simulation results show that imperfections in the system do not
substantially affect the performance of the controller. The last section of this chapter
investigates the balancing motion of the planar robot with rolling contact using the
same controller.

Chapter 4 introduces a control strategy for a single-hop motion of a planar under-
actuated robot. The robot is the same as the one that is studied in chapter 3. During a
single-hop motion, the robot starts in its upright balanced configuration and ends up
in the same configuration at the end of the hop. This hopping motion includes four
phases which are crouch-and-launch, flight, landing and rebalancing. The proposed
balancing controller in chapter 3 is used to rebalance the robot in the last phase. A
modified version of this controller is used to track reference trajectories during the
crouch-and-launch and flight phases.

In chapter 5, an angular momentum based controller is introduced to perform bal-
ancing motion of a spatial under-actuated robot. The robot is essentially a two-link
robot with five DoF and three degrees of under-actuation. The links are connected to
each other by a two-DoF actuated joint. The actuated joint is designed to be a con-
stant velocity joint which decouples the robot’s motion instantaneously into bending
and swivelling motions. The proposed controller controls each of these motions sep-
arately. Simulation results show that the controller is able to stabilize the robot in its
upright balanced configuration as well as any other balanced configuration in any ar-
bitrary vertical plane. It is also able to change the orientation of the robot by rotating
the vertical plane of the robot about the vertical axis.

The last chapter includes the concluding remarks and outlines some possible
extensions and directions for future research.

Chapter 2

Modelling the Contact between a
Sphere and the Ground

Since robots usually make contact with their environment during the execution of
their tasks (e.g. grasping, walking, rolling, etc.) modelling this contact is an indis-
pensable part of most studies in this field. In particular, in the case of legged robots,
modelling the contact between the robot’s feet and the ground is one of the most
important parts of the study. Two major forces appear during contact: the normal
force and the friction force. It is desirable to have a complete model for the contact
which is able to model both normal and friction forces.

In this chapter, a new non-linear normal force model is derived which conforms
to Hertz’s theory [Johnson, 1977] for contact between a sphere and a plate. The new
normal force model differs from a well-known existing model by only a single term.
The advantage of the new model is that it accurately predicts the measured values of
the coefficient of restitution between spheres and plates of various materials, whereas
other models do not.

In section 2.2 a new non-linear 2D model for friction force is introduced which
computes the pre-sliding movement by a non-linear equation. Combining these two
new models for normal and friction forces, gives a complete 3D model for the contact
between a sphere and a plate. A 2D version of this contact model is used later in
chapter 4 for simulating the contact between a robot’s foot and the ground.

Finally, the rolling motion of a sphere on a compliant ground plane is simulated,
and the results are presented. Rolling motion is an integral part of simulating the
general 3D motion of a robot’s foot while in contact with the ground.

Most of the results presented in this chapter are published in [Azad and Feather-
stone, 2010].

2.1 Contact Normal Force

In general, contact normal force models can be classified into two types: rigid and
compliant [Gilardi and Sharf, 2002]. Rigid models assume that both contacting sur-
faces remain fully rigid during contact whereas compliant ones assume that at least
one of the bodies is compliant and therefore deforms locally at the contact area.

9

10 Modelling the Contact between a Sphere and the Ground

Given this assumption, the normal force of a compliant model can be expressed as a
function of the local deformation and its rate of change. This chapter presents a new
compliant model to be used in dynamics simulators to estimate the contact normal
force.

Most previous studies of compliant contact models have considered the contact
between two spheres, or between a sphere and a flat plate [Hunt and Crossley, 1975;
Lankarani and Nikravesh, 1990; Falcon et al., 1998; Marhefka and Orin, 1999]. For ex-
ample, Hunt and Crossley [1975] modelled the ground as a nonlinear spring-damper
pair at the contact point with the sphere, and introduced a nonlinear equation for
the normal force between a sphere and the ground as

F = κzn + λzp żq , (2.1)

where z is the deformation variable, which is defined as the penetration distance of
the undeformed sphere into the undeformed ground, ż is the rate of deformation,
κ and λ are the coefficients of the spring and damper, respectively, and n, p and q
are constant parameters. They chose the values of these parameters as n = 3

2 (to get
similar results to Hertz’s theory), and p = 3

2 and q = 1 (to be able to determine the
value of λ with respect to κ conveniently), resulting in the equation

F = κz
3
2 + λz

3
2 ż . (2.2)

This model also has been studied by Lankarani and Nikravesh [1990] and Marhefka
and Orin [1999], and has become well known in the robotics community. This model
is referred to as the Hunt/Crossley model in this chapter.

According to the literature, the coefficient of restitution of a contact is an exper-
imental criterion to verify a normal force model and test its accuracy. There are
some studies that report experimentally measured values of the coefficient of resti-
tution between spheres and plates of various materials [Goldsmith, 1960; Kawabara
and Kono, 1987]. In the remainder of this section, the new model is derived and
its accuracy is tested against the experimental data. Using the new model and the
Hunt/Crossley model, respectively, and comparing the simulation results to the em-
pirical data shows that the new model is accurate whereas the Hunt/Crossley model
is not.

2.1.1 The New Model

The contact normal force in (2.1) is the sum of a non-linear elastic component and
a non-linear damping component. The elastic term κz

3
2 that is proposed by Hunt

and Crossley [1975] in (2.2) is consistent with Hertz’s theory for contact between
a sphere and a plate, and is known to be correct. However, there is not any strong
theoretical or experimental background for the damping term in (2.2). In this chapter
a different approach is employed to model the contact between a sphere and a plate
and it results in a new model that agrees with Hertz’s theory and differs from (2.2)
only in the value of p, which is shown to be p = 1

2 .

§2.1 Contact Normal Force 11

For modelling the contact between a sphere and a plate, a simplifying assumption
is made that one material is much harder than the other, so that substantially all of
the compression takes place in the softer body. Thus, it is considered that the harder
body is rigid and the softer body contains a uniform distribution of infinitely many
nonlinear spring-damper pairs. Therefore the contact normal force is the resultant of
the spring and damper forces

Fn = FK + FD , (2.3)

where FK and FD are the forces due to the springs and dampers, respectively. Let k
and b denote the stiffness and damping coefficients of each individual spring-damper
pair, respectively. Both k and b are functions of local deformation. So for each spring-
damper pair, that is engaged in the contact, the spring force is

fKi =
∫ δi

0
k dξ (2.4)

and the damper force is
fDi = bδ̇i , (2.5)

where δi and δ̇i are the deformation and the rate of the deformation of the ith spring-
damper pair, respectively. Consequently, total spring and damper forces would be

FK =
∞

∑
i=1

fKi =
∞

∑
i=1

∫ δi

0
k dξ =

∫
A

∫ δi

0
k dξ dA (2.6)

and

FD =
∞

∑
i=1

fDi =
∞

∑
i=1

bδ̇i =
∫

A
bδ̇idA , (2.7)

where A is the surface of the contact area. Let R and l denote the radius of the
sphere and the radius of the contact area, respectively (see Fig. 2.1). Because of the

���

��

��

�����

��

��

��

���� ����

Figure 2.1: Contact between a sphere and a plate (a) local deformation, (b) contact
area

symmetry of the deformations about the center of the contact area, all spring-damper

12 Modelling the Contact between a Sphere and the Ground

pairs at a distance r of the center have the same local deformation which is denoted
by δ(r) (with δ(0) = z). By defining dA = 2πrdr as the surface of a ring element
with inner radius r and outer radius r + dr that is centered around the center of the
contact area (see Fig. 2.1(b)), FK and FD are

FK = 2π
∫ l

0
r(
∫ δ(r)

0
kdξ)dr (2.8)

and

FD = 2π
∫ l

0
rbδ̇(r)dr . (2.9)

As can be seen from Fig. 2.1(a), δ(r) can be calculated as

δ(r) = −(R− z) +
√

R2 − r2 . (2.10)

By using binomial approximations and assuming that r is very small and negligible
with respect to R then (2.10) simplifies to

δ(r) = z− r2

2R
. (2.11)

To conform with Hertz’s theory, k is chosen to be a function of ζ−
1
2 in the form

of k(ζ) = β ζ−
1
2 , where ζ is the local deformation of each individual spring-damper

pair and β is a constant parameter depending on the mechanical properties of the
materials and the radius of the sphere. Assuming the same function for b (i.e. b(ζ) =
α ζ−

1
2), the spring and damper forces are

FK = 4πβ
∫ l

0
rδ

1
2 (r)dr (2.12)

and

FD = 2πα
∫ l

0
rδ−

1
2 (r)δ̇(r)dr . (2.13)

From (2.11), δ̇(r) = δ̇(0) = ż. Substituting (2.11) into (2.12) and (2.13), yields

FK =
8
3

πβRz
3
2 = Knz

3
2 (2.14)

and
FD = 4παRz

1
2 ż = Dnz

1
2 ż , (2.15)

where Kn and Dn are the coefficients of total stiffness and total damping, respectively.
So the total normal contact force can be expressed as

Fn = Knz
3
2 + Dnz

1
2 ż , (2.16)

which is different from the Hunt/Crossley model in the power of z in the damping

§2.1 Contact Normal Force 13

term. Comparing with Hertz’s theory,

Kn =
4
3

E∗
√

R =⇒ β =
E∗

2π
√

R
, (2.17)

where E∗ is determined by

1
E∗

=
1− ν2

1
E1

+
1− ν2

2
E2

, (2.18)

and E1 and E2 are the moduli of elasticity, and ν1 and ν2 are the Poisson’s ratios of
the two contacting surfaces [Johnson, 1977].

As was mentioned at the beginning of this section, the only simplifying assump-
tion that has been made in this derivation is that one material is much harder than
the other, so that substantially all of the deformation occurs in the softer body. This
assumption is theoretically essential for (2.16) to be physically valid. However, com-
paring the simulation results and the empirical data, in the cases where this assump-
tion does not hold, shows that the new model gives good results and is in particular
more accurate than the Hunt/Crossley model.

2.1.1.1 Equivalent Radius

Now a compliant contact between two spheres having radii R1 and R2 is considered
(see Fig. 2.2). Let δ′(r) denote the local deformation of the contact area at a distance

��

�′����

��

��� ���

Figure 2.2: Contact between two spheres

r from the center, then

δ′(r) = −(R1 + R2 − z) +
√

R2
1 − r2 +

√
R2

2 − r2 . (2.19)

14 Modelling the Contact between a Sphere and the Ground

Again by assuming that r is very small and negligible compared to both radii, we
have

δ′(r) = z− r2

2
(

1
R1

+
1

R2
) = z− r2

2R
, (2.20)

where
1
R

=
1

R1
+

1
R2

. (2.21)

Therefore R is called the equivalent radius of the contact. By comparing (2.20) with
(2.11), it is evident that the local deformation in the contact area (δ′) is the same as
the local deformation in a compliant contact between a sphere of radius R and a flat
plate (δ).

Thus, the contact normal force model in (2.16) can be used to calculate the normal
force in a sphere-plate contact as well as in a sphere-sphere contact. In the latter case,
the equivalent radius (2.17) should be used.

2.1.1.2 Implementation Algorithm

According to (2.16), Kn and Dn are the two parameters of the new contact normal
force model. The coefficient of total stiffness (Kn), which is a function of the me-
chanical properties of the contacting bodies and the radius of the contact, can be
calculated using (2.17). The coefficient of total damping (Dn) needs to be estimated
using the coefficient of restitution of the contact (see section 2.1.2). The new model
also needs z and ż as inputs to compute the normal force. Obviously, these values
can be calculated from the relative position and velocity of the two bodies making
the contact. The value of z will be negative whenever the undeformed shapes of
these two bodies do not touch (see Fig. 2.2).

To calculate the normal force, using z and ż as inputs, the simplest way is to use
the following equation:

Fn =

{
0 if z ≤ 0
max(0,

√
z (Knz + Dn ż)) if z > 0

(2.22)

where Fn is the output. So if Fn > 0 then the bodies are in contact and the friction
force needs to be computed in the next stage (which will be described later in this
chapter) and otherwise (i.e. if Fn = 0) there is no contact and the contact force is
zero.

Equation (2.22) correctly predicts that contact will be lost before z drops to zero,
because of the negative value of Dn ż when the two bodies are moving apart, but
this introduces one error into the model (see Fig. 2.3): if the sphere bounces twice
in quick succession, so that the ground has not fully recovered from the first bounce
at the time of the second landing, then (2.22) fails to model the second landing and
bounce correctly. Physically, this happens on the last bounce before the two bodies
settle into continuous contact.

§2.1 Contact Normal Force 15

�� �� ��

Figure 2.3: a) end of first bounce b) ground is recovering c) re-collision with the
ground with undetermined shape.

2.1.2 Coefficient of Restitution

In this subsection, the coefficient of restitution is calculated using different contact
models and the results are compared with each other and with published experimen-
tal results. Accurate dynamics simulations implemented in Simulink are employed
to model the contact and compute the coefficient of restitution.

According to experiments reported by Goldsmith [1960] on measuring the coef-
ficient of restitution for impacts between spheres and thick plates, the value should
decrease as the impact velocity increases. Fig. 2.4 shows the values of the coefficient
of restitution at different impact velocities, as calculated by the new model in (2.16),
the Hunt/Crossley model in (2.2), and a linear spring-damper model ((2.1) with
n = q = 1 and p = 0). In every case, gravity is set to zero. (With nonzero gravity,
impacts below a threshold velocity do not result in a bounce, implying a coefficient
of restitution equal to zero.) As can be seen, the linear model predicts a constant
coefficient of restitution, which is not physically realistic. The two nonlinear models
each correctly predict a decrease in the coefficient of restitution with increasing im-
pact velocity, but they predict curves with different shapes. The difference between
these curves can be observed more clearly by changing the scale of the horizontal
axis to a logarithmic scale, as shown in Fig. 2.5. In this figure different curves are
obtained by using different values of λ for the Hunt/Crossley model and Dn for the
new model. The curves related to the Hunt/Crossley model in Fig. 2.5 are essentially
the same as some of the curves in Fig. 2 in [Marhefka and Orin, 1999] only with a
change in the scale of the horizontal axis. It can now be seen that the new model
predicts an almost linear relationship between the coefficient of restitution and the
logarithm of impact velocity, whereas the Hunt/Crossley model does not.

Figure 2.6 compares the calculated values of the coefficient of restitution accord-
ing to the new model with empirical results published in [Goldsmith, 1960; Kawabara
and Kono, 1987], all on a logarithmic scale. The empirical data were obtained by hand
measurements from Fig. 172 in [Goldsmith, 1960] and Fig. 3 in [Kawabara and Kono,
1987]. From this graph it can immediately be seen that the data follow approximately
straight lines, which means that the new model predicts the correct relationship be-
tween the coefficient of restitution and impact velocity, whereas the Hunt/Crossley
model does not. Furthermore, in cases (A), (C), (D) and (F) the new model fits the
data very well.

Best possible fits of the Hunt/Crossley model to the experimental data have been
added to the graph in Fig. 2.7. The least-squares method is utilized to obtain the

16 Modelling the Contact between a Sphere and the Ground

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Impact Velocity (m/s)

C
oe

ffi
ci

en
t o

f R
es

tit
ut

io
n Linear Model

New Model

Hunt/Crossley Model

Figure 2.4: Coefficient of restitution vs. impact velocity calculated by three different
models

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(Impact Velocity)

C
oe

ffi
ci

en
t o

f R
es

tit
ut

io
n

New Model

H/C Model

Figure 2.5: Coefficient of restitution vs. logarithm of impact velocity calculated by
the Hunt/Crossley model and the new model for a range of model parameters

§2.1 Contact Normal Force 17

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(Impact Velocity)

C
oe

ffi
ci

en
t o

f R
es

tit
ut

io
n

A

B

C

D
E

F

Figure 2.6: Coefficient of restitution vs. logarithm of impact velocity. Dashed curves
show the experimental results and solid curves the calculated values using the new
model. Results are for the contact between (A) brass spheres (R1 = R2 = 1.5cm), (B) a
steel sphere (R = 1.27cm) and a cast iron plate, (C) cork spheres (R1 = R2 = 1.66cm),
(D) a steel sphere (R = 1.65cm) and a cork plate, (E) a steel sphere (R = 1.27cm) and

a brass plate, and (F) a steel sphere (R = 1.27cm) and a cold-worked lead plate.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(Impact Velocity)

C
oe

ffi
ci

en
t o

f R
es

tit
ut

io
n

A

B

C

D

E

F

H/C model
new model
experimental data

Figure 2.7: Coefficient of restitution vs. logarithm of impact velocity. Cases (A) to (F)
are described in Fig. 2.6.

18 Modelling the Contact between a Sphere and the Ground

curves of the new model and the Hunt/Crossley model. According to this figure, it is
clear that in all cases the new model fits the data much better than the Hunt/Crossley
model does, although the fit is not so good in cases (B) and (E). The reason for the
less accurate fit could be that in these two cases the sphere and the plate are made of
different materials having similar stiffnesses, so the assumption in subsection 2.1.1
does not hold.

In obtaining the fits shown in Figs. 2.6 and 2.7, each Kn has been calculated from
the appropriate material properties and the sphere radius using (2.17), and only Dn

has been adjusted to fit the data. So in each case, there is only one parameter that
needs to be tuned to acquire the proper curve.

2.2 Friction Force Model

There is a large number of research articles on modelling the friction force, such
as Dupont et al. [2000]; Haessig Jr and Friedland [1991]; Bliman and Sorine [1995];
Dupont et al. [2002]; Dahl [1968]; Canudas de Wit et al. [1995], most of which are
reviewed by Olsson et al. [1998]. In fact, friction is a more complicated phenomenon
than contact, and many effects are included in friction. Armstrong-Hélouvry et al.
[1994] have introduced a nearly complete model which is called the seven parameter
friction model. This model is able to capture almost all friction effects, like pre-
sliding displacement, coulomb+viscous+stribeck curve, frictional memory and rising
static friction. This is a quite complicated model which is hard to implement in sim-
ulation. Also, there are not enough experimental results in the published literature
for determining the parameters. ������

���	
��
	����������	���

��	��

���������������	����
����
Figure 2.8: Friction model incorporating pre-sliding through local deformation of a

tangential spring-damper pair

In this section, a simplified model for predicting the friction force during the con-
tact between a sphere and a plate is derived. It is, essentially, a nonlinear, 2D version
of the friction model in §11.8 of [Featherstone, 2008]. A physical interpretation of the
model, which consists of a non-linear spring-damper pair, is shown in Fig. 2.8. The
major difference between this model and previous friction force models in the liter-
ature, is the modelling of stiction force in the pre-sliding regime with a non-linear

§2.2 Friction Force Model 19

equation. The non-linearity in the equation comes from the assumption that is also
used in section 2.1.1 namely that the softer body contains a uniform distribution of
infinitely many non-linear spring-damper pairs.

To work out the correct friction force, the first step is to work out what the friction
force would be if the ground reaction force was inside the friction cone (i.e., the
sphere is not slipping on the plate). This force is called fstick and is calculated from

fstick = −ktu− btVsph , (2.23)

where u is the tangential deformation of the ground at the contact point, Vsph is the
tangential velocity of the bottom point of the sphere, and kt and bt are stiffness and
damping coefficients of the tangential non-linear spring-damper pair, respectively.
As the tangent plane is two-dimensional, fstick , u and Vsph are all 2D vectors. The
coefficients kt and bt are functions of the contact area (A), and the stiffness and
damping coefficients of each individual spring-damper pair in the normal direction
(k and b). Assuming that the contacting surfaces are isotropic, kt and bt are calculated
by

kt =
∫

A
k(ζ)dA = 2πβ

∫ l

0
rδ−

1
2 (r)dr = 4πβRz

1
2 (2.24)

and

bt =
∫

A
b(ζ)dA = 2πα

∫ l

0
rδ−

1
2 (r)dr = 4παRz

1
2 . (2.25)

Hence, the stiction force can be written as:

fstick = −Ktz
1
2 u− Dtz

1
2 Vsph , (2.26)

where according to (2.14) and (2.15) Kt and Dt are given by

Kt =
3
2

Kn = 2E∗
√

R (2.27)

and
Dt = Dn = 4πR α . (2.28)

The correct friction force will either be fstick , if it lies inside the friction cone, or
else a force lying on the friction cone and having the same direction as fstick . The
latter is called fslip , and is calculated from

fslip = fstick ×
µFn

| fstick|
, (2.29)

where µ is the coefficient of friction and Fn is the contact normal force. To avoid
a divide-by-zero error, this equation is only calculated if | fstick| > µFn. The correct

20 Modelling the Contact between a Sphere and the Ground

friction force, Ff , is now given by

Ff =

{
fslip | fstick| > µFn

fstick otherwise.
(2.30)

2.3 Example: Rolling Motion of a Sphere

The rolling motion of a sphere on the ground is simulated in this section as an
example of implementing the new 3D contact model. Using Simulink in MATLAB,
a simulation is done for the rolling motion of a steel sphere on a cork plate (i.e. case
(D) in Figs. 2.6 and 2.7). The sphere has a radius of R = 1.65cm and its mass is
m = 154g. It is released from an initial height of 10cm of its CoM with 0.5m

s initial
velocity in both x and y directions. The coefficient of friction is set to µ = 0.2. The
stiffness coefficients are calculated using mechanical properties of steel and cork as
Kn = 8.5× 106 and Kt = 12.75× 106 and damping coefficients are Dn = 3.1× 103 and
Dt = 3.1× 103.

2.3.1 Equations of Motion

The motion equations for a rolling sphere on the ground in 3D space are

f = mc̈ (2.31)

and
nC = Īc ω̇ + ω× Īc ω , (2.32)

where f is the resultant force acting on the sphere, nC is the moment around the
center of the sphere, c is a vector giving the position of the center of mass, Īc is the
moment of inertia of the sphere about its center of mass, and ω is the angular velocity
of the sphere. The velocity of the contact point is calculated by

VP = ċ + ω×−→CP , (2.33)

in which
−→
CP is a vector from the CoM of the sphere to the contact point.

2.3.2 Results

Figure 2.9 shows the height of the lowest point of the sphere against time and Fig. 2.10
shows the normal force exerted by the ground on the sphere.

Figure 2.11 shows the contact force exerted on the sphere at the first bounce.
It can be seen from this figure that the force is continuous and starts from zero at
the beginning of the contact and comes back to zero smoothly. Also it is not sticky
(negative) during the contact.

Figure 2.12 shows the friction force in the x direction. Because of the initial
conditions, friction forces in both x and y directions are the same. Fig. 2.13 shows

§2.3 Example: Rolling Motion of a Sphere 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

7

8

9

Time (s)

H
ei

gh
t (

cm
)

Figure 2.9: Vertical position of the lowest point of the sphere

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Time (s)

 N
or

m
al

 F
or

ce
 (

N
)

Figure 2.10: Contact normal force during the rolling motion of the sphere

22 Modelling the Contact between a Sphere and the Ground

130 130.5 131 131.5 132 132.5 133 133.5 134
0

50

100

150

200

250

Time (ms)

 N
or

m
al

 F
or

ce
 (

N
)

Figure 2.11: Enlargement of the first bounce in Fig. 2.10

the friction force in the x direction at the first bounce. It can be seen from this figure
that the friction force is completely continuous and smooth. It is also shown that the
contact starts with slipping of the sphere on the ground and after that, as the normal
force approaches its maximum value (according to Fig. 2.11), the sphere sticks on the
ground for less than 1ms and then again starts slipping until the end of the contact.

According to Fig. 2.13, the direction of the friction force is changed during the
sticking period (at about t = 132ms) implying that the moving direction of the con-
tact point on the sphere and therefore the sign of its velocity (Vsph) is changed. The
reason is that after hitting the ground with initial positive velocity, the sphere starts
rolling on the ground (and thus spinning about its CoM) so the velocity of the contact
point changes its direction. The change in the sign of the velocity is also illustrated
in Fig. 2.14. This figure shows the x components of c and Vsph (i.e., the position of
the CoM and the velocity of the contact point). Looking at this figure, it can be seen
that after 0.5s, the velocity is zero but the position is still increasing, which means
that the sphere is rolling on the ground.

2.4 Summary

A complete full 3D nonlinear contact model for both normal and friction forces is
presented in this chapter. The new nonlinear normal force model is different from
previous ones in the exponent of the ground deformation in the damping term. By
comparing simulation results with empirical results of the contact between a sphere
and a plate or between two spheres, it is shown that the new model can predict values

§2.4 Summary 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Time (s)

F
ric

tio
n

F
or

ce
 (

N
)

Figure 2.12: Friction force in x direction during the rolling motion of the sphere

130 130.5 131 131.5 132 132.5 133 133.5 134
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Time (ms)

F
ric

tio
n

F
or

ce
 (

N
)

no contact slip stick no contactslip

Figure 2.13: Enlargement of the first bounce in Fig. 2.12

24 Modelling the Contact between a Sphere and the Ground

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Velocity

Position

Figure 2.14: Position of the CoM and velocity of the contact point in x direction

of the coefficient of restitution more accurately than previous models. It is therefore
likely to be a better choice when physically accurate simulations are required.

Finally, rolling motion of a sphere on the ground is simulated and the results
are presented. As a non-spherical foot can be represented by a union of spheres, by
using this model, it is possible to simulate the 3D motion of a robot’s foot on the
ground.

Chapter 3

Balancing Control Algorithm for an
Under-actuated Planar Robot

In this chapter a new and simple balancing control algorithm is introduced for an
under-actuated planar robot based on its angular momentum. The robot “2D bal-
ancer” consists of two bodies connected to each other by an actuated revolute joint
(knee joint). The lower body is attached to the ground by a passive revolute joint. The
2D balancer resembles the acrobot (for acrobatic robot) first introduced by Hauser
and Murray [1990].

It is proved that the new controller is able to stabilize the robot at any unstable
balanced configuration in which the robot is physically controllable. The controller
is able to follow setpoint commands, where only the target configuration is given,
and also motion trajectory commands, where the motion of the actuated joint is a
prescribed function of time. However, the latter necessarily involves tracking errors
for the purpose of maintaining balance.

The proposed new controller is also able to cope with certain imperfections in
the system such as model errors, state estimation errors and quantization errors. It
is shown in simulations that the controller still shows reasonably good performance
even in the presence of a significant amount of imperfections in the system.

The new controller is compared in simulation with three other balancing control
algorithms in the literature. It is shown that, during the straightening motion, the
new controller outperforms the other controllers when there are not any imperfec-
tions in the system. However, simulation results show that the controller is slightly
more sensitive to errors in estimates of the vertical direction in comparison with
Grizzle’s control algorithm Grizzle et al. [2005].

Finally, the performance of the new control algorithm is studied in balancing
motion of a curved-foot 2D balancer robot. The difference between the 2D balancer
and a curved-foot 2D balancer is that, in the latter, the lower body of the robot
contains a curve, called the foot, that is in rolling contact with a flat supporting
surface (the ground). Hence, the original 2D balancer is a special case of the curved-
foot 2D balancer where the curve is shrunk to a single point so the rolling contact is
simplified to a passive revolute joint. The balancing motion of a one-leg robot with
a rolling contact is considered because of its application in balancing legged-robots

25

26 Balancing Control Algorithm for an Under-actuated Planar Robot

when the shape of the foot is modelled with an arbitrary curve that is in rolling
contact with the ground.

Most of the results presented in this chapter are published in [Azad and Feather-
stone, 2012].

3.1 Robot Model and Motion Equations

The 2D balancer is essentially an inverted double pendulum mechanism which is
fixed passively to the ground via its first joint. This system is under-actuated with
only one actuator that applies torque to the knee joint. Fig. 3.1 shows a schematic
diagram of the 2D balancer and the parameters of the system.���

������� �������
���

���
���

Figure 3.1: 2D balancer robot model and its parameters

The motion equations for this robot are:

0 = (c1 + c2 + 2c3 cos(q2))q̈1 + (c2 + c3 cos(q2))q̈2

− (2c3 sin(q2)q̇1q̇2 + c3 sin(q2)q̇2
2) + c4g cos(q1) + c5g cos(q1 + q2) (3.1)

τ = (c2 + c3 cos(q2))q̈1 + c2q̈2 + c3 sin(q2)q̇2
1 + c5g cos(q1 + q2) (3.2)

where τ is the torque applied at the knee joint, I1 and I2 are the moments of inertia
of the links about their centers of mass (CoM), g is the acceleration of gravity, and

c = m1 + m2 , c1 = m1l2
c1 + m2l2

1 + I1 , c2 = m2l2
c2 + I2 ,

c3 = m2l1lc2 , c4 = m1lc1 + m2l1 , c5 = m2lc2 .

3.2 Balancing Controller

In this section a feedback control law for balancing motion of the robot is derived.
First the balancing conditions of the robot are formulated and then an output func-

§3.2 Balancing Controller 27

tion based on those conditions is defined in a way that zeroing the output function
is equivalent to satisfying the conditions for balance. The feedback control law will
drive the output function to zero exponentially and therefore it will stabilize the
robot in its unstable balanced configuration.

Let X denote the horizontal displacement of the CoM relative to the first joint, so

X =
1
c
(c4 cos(q1) + c5 cos(q1 + q2)) , (3.3)

and let L denote the angular momentum of the robot about the first joint:

L = (c1 + c2 + 2c3 cos(q2))q̇1 + (c2 + c3 cos(q2))q̇2 . (3.4)

The conditions for balance are: X = 0 and q̇1 = q̇2 = 0. However, as Ẋ and L are
both linear functions of q̇1 and q̇2, the two velocity constraints can be replaced with
Ẋ = 0 and L = 0. According to elementary classical mechanics, the rate of change of
angular momentum of a multibody system about any fixed point equals the moment
about that point of the external forces acting on the system. As L is chosen to be
expressed at the first joint, which is passive, it follows that L̇ must equal the moment
of the gravitational force about the first joint. So

L̇ = −cgX , (3.5)

and therefore also
L̈ = −cgẊ . (3.6)

Equation (3.5) could also be derived by differentiating (3.4) and plugging it into (3.1).
The conditions for balance can now be written as L = L̇ = L̈ = 0; so it is possible
to consider the angular momentum as an output function and define a feedback
controller that drives it (and its derivatives) to zero exponentially. One possible
control law is

τ = kdd L̈ + kd L̇ + kpL , (3.7)

where kdd, kd and kp are controller gains. Another possibility is

τ = −kvẊ− kxX + kpL , (3.8)

where kv = cgkdd and kx = cgkd . This equation is obtained by substituting (3.5) and
(3.6) into (3.7).

3.2.1 Modifying the Controller

In the proposed control laws in (3.7) and (3.8), the control torque in the balanced
configuration is zero, which happens only if the robot is in its vertical configuration.
It means that the proposed controller is able to stabilize the robot only in the vertical
unstable balanced configuration. In this subsection the controller is modified to be
able to stabilize the robot in any other unstable balanced configuration as well as the
vertical one.

28 Balancing Control Algorithm for an Under-actuated Planar Robot

Let τg and τd
g denote the gravity terms of the second link’s motion equation at the

current and desired configurations. So from (3.2) it is obvious that

τg = c5g cos(q1 + q2) and τd
g = c5g cos(qd

1 + qd
2) , (3.9)

where qd
1 and qd

2 are the desired values of q1 and q2 at the desired configuration,
respectively. Any desired balanced configuration is characterised by the value of qd

2.
The value of qd

1 can then be calculated using the balance condition:

X = 0 =⇒ c4 cos(qd
1) + c5 cos(qd

1 + qd
2) = 0 . (3.10)

One possible way to modify the controller, to reach the above mentioned goal,
is to add τd

g as an extra feed-forward term to the control law. So the discrepancy
between τg in the motion equation and τd

g in the control law drives q2 to its desired
value qd

2. The problems with this method are:

1. the range of the desired configurations in which the controller can balance the
robot is limited to those with the links pointing upward (i.e., sin(q1) > 0 and
sin(q1 + q2) > 0).

2. in the presence of modelling error, which is unavoidable in practice, the value
of τd

g is not accurate so the robot will not converge exactly to the desired con-
figuration, but to a nearby one instead.

3. because of using a feed-forward term in the controller, any error in the actuator
directly affects the accuracy of convergence to the desired configuration of the
robot.

Another possible way to modify the control law (3.7) which does not lead to the
above mentioned problems is adding a gravity compensator to the controller and
a virtual spring to the robot model. The gravity compensator (τg) cancels out the
gravity term in (3.2) and the virtual spring (i.e., linear rotational spring between the
two links) adds an extra term in the left-hand side of (3.2). The effect of the virtual
spring is to provide a feedback term in the control law to decrease the error between
q2 and qd

2. The new modified control law is then

τ = kdd L̈ + kd L̇ + kpL + ks(qd
2 − q2) + τg (3.11)

or alternatively
τ = −kvẊ− kxX + kpL + ks(qd

2 − q2) + τg (3.12)

where ks is the stiffness of the virtual spring in the robot model. The modified
controller is relies on the virtual spring force, which is a feedback term, to drive q2

to qd
2. Also the modified controller offers one more parameter to tune (ks) which

can be used to improve the performance of the controller and extend the range of
configurations in which the controller can successfully balance the robot.

§3.3 Stability Analysis 29

3.3 Stability Analysis

Rewriting the nonlinear state-space equations for the robot as

η̇ = f (η) + g(η) τ

where η = (q1−qd
1, q2−qd

2, q̇1, q̇2), and employing a controller such that τ is a function
of η, it follows that η̇ is a function of η, so the closed-loop system can be described
by a nonlinear equation of the form η̇ = h(η). Linearizing about η = 0 yields

η̇ = A η

where A = ∂h
∂η |η=0 is a 4× 4 matrix. To check the exponential (local) stability of the

system and calculate the controller gains, the eigenvalues of A, which are the roots
of its characteristic equation, need to be calculated. The characteristic equation for A
has the general form:

aλ4 + (gKkdd)λ
3 + (gKkd + β + γ1ks)λ

2 + (gKkp)λ + (γ2ks) = 0 , (3.13)

where

a = c1c2 − (c3 cos(qd
2))

2 ,

K = c4 sin(qd
1)(c2 + c3 cos(qd

2))− c5 sin(qd
1 + qd

2)(c1 + c3 cos(qd
2)) ,

β = g(c3c5 cos(qd
2) sin(qd

1 + qd
2)− c2c4 sin(qd

1)) ,

γ1 = c1 + c2 + 2c3 cos(qd
2) ,

γ2 = −g(c4 sin(qd
1) + c5 sin(qd

1 + qd
2)) . (3.14)

According to the Routh-Hurwitz stability criterion, and because a is always a
positive constant independent of the choice of gains, the linearized system is locally
exponentially stable if and only if

gKkdd > 0 , γ2ks > 0 , (3.15)

(gKkd + β + γ1ks)−
kp

kdd
a > 0 , (3.16)

gKkp −
gKkdd γ2ks

(gKkd + β + γ1ks)−
kp
kdd

a
> 0 . (3.17)

It is obvious that the inequalities in (3.15) can be satisfied by choosing proper values
for kdd and ks, if γ2 6= 0 and K 6= 0. Also it can be proved that under the same
conditions, there always exists a set of values for kd and kp that satisfy (3.16) and
(3.17), simultaneously.

30 Balancing Control Algorithm for an Under-actuated Planar Robot

Proof1: Let kd be

kd =

kp
kdd

a− β− γ1ks + δ

gK
,

where δ is a positive number. Inequality (3.16) then simplifies to δ > 0 and inequality
(3.17) can be written as

gKkp −
gKkdd γ2ks

δ
> 0 .

Therefore, by choosing a proper value for kp which satisfies

Kkp >
kddγ2ks

δ
K

both inequalities in (3.16) and (3.17) will be satisfied, simultaneously. �
Consequently, the Routh-Hurwitz stability criterion for the 2D balancer simplifies

to
γ2 6= 0 and K 6= 0 . (3.18)

It will now be shown that γ2 = 0 happens only when the CoM of the robot coincides
with its first joint, which is called “ neutral balance”, and K = 0 only happens at
desired configurations in which the robot is uncontrollable.

Neutral balance at γ2 = 0: According to (3.10), it is clear that

c2
4 cos(qd

1)
2 = c2

5 cos(qd
1 + qd

2)
2

at every balanced configuration, which implies

c2
4 − c2

5 = c2
4 sin(qd

1)
2 − c2

5 sin(qd
1 + qd

2)
2 . (3.19)

So if c4 6= c5 then c2
4 − c2

5 6= 0 and consequently

c4| sin(qd
1)| 6= c5| sin(qd

1 + qd
2)| . (3.20)

Therefore, the only condition that permits γ2 = 0 is c4 = c5; and the only value of qd
2

that satisfies both (3.10) and γ2 = 0 when c4 = c5 is qd
2 = ±π. In this case, the robot

is in a neutral balanced configuration with its CoM at the rotation center of the first
joint.

Uncontrollability at K = 0: It can be proved that if K = 0 at a desired config-
uration then the velocity gain (GV) is also zero at that configuration. The velocity
gain, introduced in [Featherstone, 2012], is a dimensionless measure that expresses
the degree to which the robot’s CoM will move in response to motion of the actuated
joint. When the velocity gain is zero, applying instantaneous torque to the actuator
has no effect on the CoM of the robot. In other words if GV at a desired configuration
is zero then the robot is intrinsically uncontrollable at that configuration.

The following is the proof of the statement that at any desired unstable balanced

1This proof is due to Dr. Roy Featherstone.

§3.3 Stability Analysis 31

configuration of the 2D balancer robot other than a neutral balanced configuration,
K = 0 if and only if the velocity gain (GV) is zero. Neutral balanced configurations
are excluded because GV as defined in [Featherstone, 2012] is not defined at such
configurations.

Proof: According to Eq. 5 in [Featherstone, 2012], the velocity gain for a 2D
balancer is

GV(q2) =
c2

y +
m2 cx c2x
m1+m2

c2
x + c2

y
− H12

H11
, (3.21)

where

H11 = c1 + c2 + 2c3 cos(q2) ,

H12 = c2 + c3 cos(q2) ,

cx = (c4 + c5 cos(q2))/c ,

cy = c5 sin(q2)/c ,

c2x = lc2 cos(q2) and c2y = lc2 sin(q2) .

So GV at a desired configuration can be written as

GV(qd
2) =

c2
5 + c4c5 cos(qd

2)

c2
4 + c2

5 + 2c4c5 cos(qd
2)
− c2 + c3 cos(qd

2)

c1 + c2 + 2c3 cos(qd
2)

. (3.22)

The first denominator is zero if and only if c4 = c5 and cos(qd
2) = −1, which is the

condition for neutral balance, so this possibility is excluded. The second denomina-
tor is nonzero because it is the first element of the robot’s joint-space inertia matrix,
which is a positive-definite matrix. By multiplying both sides of (3.22) by both de-
nominators, it follows that GV(qd

2) = 0 if and only if

c5(c5 + c4 cos(qd
2))(c1 + c3 cos(qd

2)) = c4(c4 + c5 cos(qd
2))(c2 + c3 cos(qd

2)) . (3.23)

Also using (3.14) it is clear that K = 0 if and only if

c4 sin(qd
1)(c2 + c3 cos(qd

2)) = c5 sin(qd
1 + qd

2)(c1 + c3 cos(qd
2)) . (3.24)

The proof is now concluded for two different cases:

First, if sin(qd
2) = 0: In this case, cos(qd

2) = ±1 and the balance condition in (3.10)
becomes

(c4 ± c5) cos(qd
1) = 0 .

Given that neutral balance configurations are excluded, then cos(qd
1) = 0 and con-

sequently qd
1 = π

2 and sin(qd
1 + qd

2) = cos(qd
2) = ±1. Substituting these values into

(3.23) and (3.24) both of these conditions become identical.

Second, if sin(qd
2) 6= 0: In this case the balance condition in (3.10) can be written

as
c4 cos(qd

1) + c5 cos(qd
1) cos(qd

2)− c5 sin(qd
1) sin(qd

2) = 0 . (3.25)

32 Balancing Control Algorithm for an Under-actuated Planar Robot

Multiplying both sides of the above equation by sin(qd
2) 6= 0, yields

c4 cos(qd
1) sin(qd

2) + c5 cos(qd
1) cos(qd

2) sin(qd
2)− c5 sin(qd

1) sin(qd
2)

2 = 0 , (3.26)

which implies

c4 cos(qd
1) sin(qd

2) + c5 cos(qd
2) sin(qd

1 + qd
2) = c5 sin(qd

1) . (3.27)

Adding the term c4 sin(qd
1) cos(qd

2) to both sides of the above equation, it simplifies
to

sin(qd
1 + qd

2)(c4 + c5 cos(qd
2)) = sin(qd

1)(c5 + c4 cos(qd
2)) . (3.28)

Now, if sin(qd
1 + qd

2) 6= 0 and sin(qd
1) 6= 0, then multiplying each side of (3.28) by the

corresponding side of (3.24), it is concluded that K = 0 if and only if

c4(c4 + c5 cos(qd
2))(c2 + c3 cos(qd

2)) = c5(c5 + c4 cos(qd
2))(c1 + c3 cos(qd

2)) , (3.29)

which is equivalent to GV = 0 in (3.23). Otherwise, if sin(qd
1 + qd

2) = 0, then from
(3.24) it is clear that K = 0 if and only if c2 + c3 cos(qd

2) = 0. Also, considering (3.28),
it is concluded that c5 + c4 cos(qd

2) = 0 when sin(qd
1 + qd

2) = 0. On the other hand, if
sin(qd

1) = 0 then c4 + c5 cos(qd
2) = 0 and also K = 0 if and only if c1 + c3 cos(qd

2) = 0.
Thus, if sin(qd

1 + qd
2) 6= 0 or sin(qd

1) 6= 0, then both of sides of (3.23) become zero
which proves that K = 0 if and only if GV = 0. �

In summary, the proposed controller is able to stabilize the robot in any unstable
balanced configurations except the neutral ones (γ2 = 0) or those in which the robot
is uncontrollable (K = 0).

3.4 Gain Calculations

Given the stability analysis in the previous section, a fast controller is defined by
using the pole placement method to maximize the speed of the slowest pole. In this
case all poles of the closed loop system are placed at the same point which means
that

λ1 = λ2 = λ3 = λ4 = −p ,

where p is related directly to ks as

4

∏
i=1

λi = p4 =
γ2ks

a
, (3.30)

where γ2 and a are defined in (3.14). The above relationship between ks and p im-
plies the direct effect of the value of ks on the location of the poles and therefore on
the overall rate at which the controller converges to the desired configuration (con-
vergence rate of the controller). Increasing the convergence rate, by increasing the
value of ks, will reduce the region of stability around the desired configuration and
cause more energetic movements of the robot. Thus, choosing a value for ks requires

§3.5 Following a Trajectory 33

a trade-off between the convergence rate, the region of stability and the consumed
energy. Once ks has been chosen, the other gains must then be chosen so that (3.13)
matches the polynomial

(λ + p)4 = λ4 + 4pλ3 + 6p2λ2 + 4p3λ + p4 = 0 . (3.31)

With this choice of gains, all poles of the closed loop system are negative, so the
system is asymptotically stable and the remaining controller gains become

kp =
4 p3 a

gK
, kd =

6 p2a− β− γ1ks

gK
, kdd =

4 p a
gK

. (3.32)

3.5 Following a Trajectory

As described in section 3.2, making the robot move from one balanced configuration
to another can easily be accomplished by feeding the desired value of qd

2 to the control
law in (3.11). However, making the robot follow a prescribed trajectory is harder. In
this section the control law is modified to enable the robot to follow arbitrary motion
trajectories. Here, an ’arbitrary’ motion trajectory for the 2D balancer is defined to be
an equation that specifies qd

2 as an explicit function of time and is not constrained to
have any particular algebraic form. Also the desired trajectory is not required to be a
member of a special class of trajectories that the robot can follow exactly, such as the
trajectories described in [Berkemeier and Fearing, 1999]. In general, following such
a trajectory with no tracking error is physically impossible without losing balance.
The controller follows the trajectory as closely as possible and therefore it is expected
that the controller generates an appropriate (small) tracking error while it is trying
to follow an arbitrary trajectory and maintain its balance at the same time.

Clearly, there will be commanded trajectories that will cause the controller to
lose balance. No attempt has been made to characterize these trajectories. The sim-
ulations in the next section consider only trajectories that the controller can follow
successfully.

To implement trajectory following, the control law in (3.11) is used, but L is re-
placed with (L − Ld). Ld is the theoretical value of L assuming that the robot is
perfectly following the desired trajectory at the current instant. Since the desired
trajectory of the robot, which is determined by qd

2, is a function of time then Ld is also
a function of time depending on qd

2 and the desired velocity (q̇d
1 and q̇d

2) of the robot.
According to (3.4) we have

Ld = (c1 + c2 + 2c3 cos(qd
2))q̇

d
1 + (c2 + c3 cos(qd

2))q̇
d
2 , (3.33)

where q̇d
2 is computed from the reference trajectory and q̇d

1 is calculated from (3.3)
assuming that Ẋ = 0 and the robot is balanced.

During a trajectory-following motion of the robot, the gains of the controller are
not constant but vary as a function of the desired configuration at each instant of the
motion.

34 Balancing Control Algorithm for an Under-actuated Planar Robot

3.6 Simulations

The parameters for the balancer that are used in the simulations are the same as the
“good balancer” in [Featherstone, 2012] , and are listed in the row ‘simulator’s model’
in Table 3.1. The bottom row in this table lists the incorrect parameters that will be
used later to test the controller’s robustness to modelling errors.

Table 3.1: Model parameters used in the simulations
m1 l1 lc1 I1
m2 l2 lc2 I2

simulator’s 0.49 0.4 0.1714 0.0036
model 0.11 0.6 0.4364 0.0043
controller’s 0.44 0.4 0.1543 0.0032
model 0.1 0.6 0.4078 0.0039

To demonstrate the performance of the new controller, the results of three sets
of simulations are presented in this section. All simulations have been done with
Simulink. In the first set, presented in subsection 3.6.1, it is assumed that there are
no imperfections in the system and the controller has access to the exact model of the
plant (i.e., the controller uses the same model parameters as the simulator). In this
set of simulations, a continuous variable time step 4th order Runge-Kutta integrator
(ode45) with maximum step size of 10ms is used.

In the second and third sets of simulations, presented in subsections 3.6.2 and
3.6.3, some imperfections are added to the system to model a variety of practical
effects. The difference is that the imperfections that influence the controller’s per-
ception of the balanced configuration of the robot (qd

1 and qd
2) are considered only in

subsection 3.6.3. As already mentioned in subsection 3.2.1, the controller calculates
the balanced configuration (qd

1) given the value of qd
2 and using (3.10). If the imperfec-

tions do not change the ratio of c4/c5, then the controller is able to correctly predict
the value of qd

1 in the desired balanced configuration. In this case, the controller is
more robust than in the alternative scenario.

For the sets of simulations in subsections 3.6.2 and 3.6.3, the controller is modelled
as a sampled-data system running at a servo rate of 1kHz, and so a continuous
variable time step 4th order Runge-Kutta integrator (ode45) with maximum step size
of 1ms is used to simulate the dynamics of the robot. The controller uses a first-order
integrator for its own internal calculations.

3.6.1 Perfect Modelling

To show the best performance of the controller in theory, simulations have been done
for a theoretically perfect system where the controller uses:

1. the same model as the simulator (i.e. the simulator’s model in Table 3.1),

2. the actual values of the robot’s state variables,

§3.6 Simulations 35

3. an actuator which is an ideal torque source and operates without any torque
limits.

The gains are calculated so as to place the poles of the closed-loop system at −7 at
the desired configuration (i.e. p = 7).

Figure 3.2 shows the balancer moving from a crouched position (q2 = −π
2) to the

upright balanced position (qd
2 = 0) and Fig. 3.3 shows the robot starting from the

upright position and moving to a balanced crouching position (q2 = −π
2). In both

examples it can be seen that the convergence rate is quite high and the settling time
is about one second.

0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
 (

ra
d)

q
1
 − π / 2

q
2

Figure 3.2: Robot’s straightening motion—perfect modelling

Figure 3.4 shows the trajectory tracking performance of the robot when the com-
mand for q2 consists of two steps, a linear ramp and a sine wave function. Although
there are some tracking errors in the resulting motion, the robot still follows the
desired trajectory very well. It is also noticeable in all Figs. 3.2, 3.3 and 3.4 that
once the robot receives a command to follow, it first starts moving in the opposite
direction of the command and then it quickly comes back to the direction of the de-
sired trajectory. This behaviour is a property of all double-pendulum under-actuated
robots with negative velocity gains2, and tracking errors due to that behaviour are
physically unavoidable.

Finally, Fig. 3.5 shows how q1 converges to qd
1 = π

2 during a straightening motion
starting from an initial crouched configuration (q2 = −π

2) using different values of

2A double-pendulum robot with a negative velocity gain tips in the opposite direction of the one
in which the robot is commanded. For example, to make a double-pendulum begin to tip forward
(starting from its balanced upright position), it is necessary to bend the upper link backwards, at least
momentarily.

36 Balancing Control Algorithm for an Under-actuated Planar Robot

0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
 (

ra
d)

q
1
 − π / 2

q
2

Figure 3.3: Robot’s crouching motion—perfect modelling

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

 q
2 (

ra
d)

 Time (s)

Command
Output

Figure 3.4: Trajectory-tracking performance of the robot—perfect modeling

§3.6 Simulations 37

p. Comparing the graphs in this figure, it follows that by increasing p the robot will
reach the desired configuration faster. However, using higher values of p will cause
the controller to produce more energetic movements and therefore make larger initial
movements in the opposite direction at the beginning of the motion, as well as larger
overshoots as q1 approaches π

2 . Thus, as has already been mentioned, choosing p (i.e.
choosing ks) requires a trade-off between speed and overshoot in which the dynamics
of the robot and the available torque have to be considered.

0 0.5 1 1.5 2

1.2

1.4

1.6

1.8

2

2.2

 Time (s)

 q
1 (

ra
d)

p=5
p=6
p=7
p=8
p=9
p=10

Figure 3.5: Effect of different pole locations on a straightening motion

3.6.2 Considering Model Imperfections

In the second set of simulations we demonstrate the performance of the controller
in more realistic situations by including imperfections in the simulations. The im-
perfections considered in this subsection are those that do not affect the controller’s
calculation of the balanced configuration of the robot (i.e., the calculation of qd

1 from
qd

2 via (3.10)). Specifically, the following imperfections are considered.

1. Discrete execution – As already mentioned, the controller is modelled as a sampled-
data system. Thus, the controller evaluates its inputs every 1ms, performs cal-
culations using these inputs and stored data from previous executions, and
updates the outputs and stored data. Since the outputs are updated immedi-
ately after the inputs are sampled, the average time delay between inputs and
outputs is 0.5ms.

2. Modelling error – Modelling error is the error that occurs in model-dependent
calculations of the controller when it uses an ’estimated’ model of the robot

38 Balancing Control Algorithm for an Under-actuated Planar Robot

instead of the ’exact’ one. The parameters of the estimated and exact models
are listed in Table 3.1 under “controller’s model” and “simulator’s model”,
respectively. The parameters of the estimated model are different from the
exact one by almost 10%. The parameters have been calculated in a way that
they do not affect the ratio c4/c5 and therefore the controller’s perception of
balanced configurations will be correct.

3. Quantization – Two encoders have been used at the joints to read the joint angles.
Thus, outputs of the encoders are quantized values of the joint angles instead
of their actual values. The encoder in the passive joint has a resolution of 8192
counts per revolution, and the encoder in the active joint which is embedded
in the motor has a resolution of 512 counts per revolution. A gearbox with a
reduction ratio of 66 is used to transmit the torque from the motor to the joint.
Thus, the resolution at the active joint is 66×512 counts per revolution.

4. Velocity estimation – Instead of integrating the angular accelerations to obtain
the angular velocities (q̇1 and q̇2), the controller uses the quantized values of
the joint angles and estimates the velocities via a velocity estimation method.
The velocity estimator which is used in the simulations is a linear observer as
described in [Harnefors and Nee, 2000]. The linear observer works as follows.
If θ(n) is the angle measurement at the nth time step, coming from an encoder
then the estimated velocity of that angle at the next time step, ˆ̇θ(n + 1) is

ˆ̇θ(n + 1) = ˆ̇θ(n) + Tsρ
2(θ(n)− θ̂(n)) , (3.34)

where θ̂(n) is an internal state variable that is updated via

θ̂(n + 1) = θ̂(n) + Ts(
ˆ̇θ(n) + 2ρ(θ(n)− θ̂(n))) . (3.35)

In the above equations, Ts is the time step, which is 1ms, and ρ is a gain param-
eter which is set to 200 in our simulations.

5. DC motor model and velocity servo – A brushless DC motor is used to actuate
the knee joint via a reduction gearbox. A velocity servo, which is in fact a PI
controller, is used to command the motor. The servo receives the desired veloc-
ity (q̇d

2) from the balancing controller as an input and works out the required
voltage of the motor. The proportional and integral gains of the PI controller
are 15 and 200, respectively. It is assumed that the sampling rate of the servo is
sufficiently fast and therefore the servo is regarded as a continuous-time system
which has access to the exact value of the velocity of the motor for its internal
calculations.

Let i and T denote the current through the motor and the output torque, re-
spectively. Then

T = Kt i , (3.36)

where Kt is the torque constant of the motor. The current (i) is an internal state

§3.6 Simulations 39

Table 3.2: DC motor parameters
stall torque 127mN.m nominal torque 23.1mN.m

no-load speed 12900rpm nominal speed 10500rpm
resistance(R) 13.1 Ω inductance(L) 0.729mH

torque constant(Kt) 34.8mN.m.A−1 rotor inertia 4.45g.cm2

speed constant (Ke) 274rpm.V−1 power 25W

variable which is calculated using the following differential equation:

V − Keφ̇ = Ldi
dt

+ R i , (3.37)

where V is the voltage across the motor, φ̇ is the rotor velocity (computed from
q̇2), and Ke, L and R are constant parameters. The parameters of the DC motor
are listed in Table 3.2. They have been obtained from the data sheet for part
number 283860 from MaxonMotors. According to the data sheet, the voltage
of the motor is restricted to ±48V implying that there is a speed-dependent
torque limit on the actuator. This motor was chosen for no reason other than as
a source of realistic parameter values.

As already mentioned, a reduction gearbox with zero-backlash is used to trans-
mit the torque from the motor to the joint. Based on part number 166940 from
MaxonMotors, the efficiency of the gearbox is 70%. The inertia of the gearbox
is assumed to be zero but the motor’s rotor inertia is incorporated into the
equation of motion of the robot after being multiplied by the square of the gear
ratio.

Figure 3.6 shows a schematic diagram of the subsystems used in the simulations
in this subsection. The plant, including the model of the mechanism, the DC motor
model and the velocity servo, are treated as continuous-time subsystems, whereas
the controller, including all other parts, are treated as sampled-data subsystems with
a sampling time of 1ms. The encoders are not actually part of the controller but are
treated as a sampled-data subsystem.

According to the signal flow in Fig. 3.6, the plant outputs the joint angles (q1

and q2) to the encoder block, which passes the quantized values of the joint angles
(q̂1 and q̂2) to the velocity estimator block. The control law block calculates the
desired value of the torque on the basis of the estimated joint angles, the estimated
angular velocities (ˆ̇q1 and ˆ̇q2) and the command signal using the estimated model.
The estimated model is also used by the forward dynamics block to compute the
desired acceleration and therefore the desired velocity of the knee joint (q̇d

2) according
to the desired torque. The velocity servo uses the desired velocity and calculates the
required voltage as already described.

Figure 3.7 shows the balancing performance of the robot when it starts from a
crouched position (q2 = −π

2) and is aiming for the upright position. Figure 3.8 shows
the crouching motion of the robot when it starts from the balanced upright position.

40 Balancing Control Algorithm for an Under-actuated Planar Robot

��, ���

��������

���	
����

�	�����

���� �� ����, �����
��������

�	�����

���, �����	����	��

��
������

���	
����

������	��
��
	�����

	���	��

���

�	�����

�����
��

����	�	��

�	����

	�����

���	
����

����	�

	���	����������

	���	�������

�	����	��

��
������

Figure 3.6: Block diagram of the system with model imperfections

0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
 (

ra
d)

q
1
 − π / 2

q
2

Figure 3.7: Robot’s straightening motion with imperfections

§3.6 Simulations 41

By comparing the straightening motion of the perfect system (Fig. 3.2) and the system

0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
 (

ra
d)

q

1
 − π / 2

q
2

Figure 3.8: Robot’s crouching motion with imperfections

with imperfections (Fig. 3.7), it can be seen that overshoot is larger and the settling
time is longer in the latter. Regarding the crouching motion of these two systems
(Figs. 3.3 and 3.8), clearly there are not any noticeable differences in overshoot and
settling time but a small steady-state error in the system with imperfections (Fig. 3.8).
The reason behind the steady-state error is that the gravity compensation term (τg)
is a model-dependent variable (depends on c5) which is incorrectly calculated by
the controller in the system with imperfections. Notice that the steady-state error
does not appear in the straightening motion because τg = 0 in the upright balanced
configuration. In spite of the already mentioned differences in the balancing motion
of the perfect system and the one with imperfections, the overall performance of the
controller is almost the same implying that it is robust to the types of imperfections
considered in this subsection.

Figure 3.9 shows the trajectory tracking performance of the robot in the presence
of model imperfections in the system. The robot does not follow the desired trajec-
tory as well as it does in the perfect modelling case, but it still shows a reasonably
good performance. The output shows a lag in following the ramp trajectory; and
there is a steady-state or offset error in every configuration other than the upright
one, which is due to the error in the calculation of τg.

3.6.3 Imperfections that Influence the Balanced Configuration

There are two types of error that influence the controller’s calculation of the balanced
configuration which are modelling errors (errors in the estimated model) and bias

42 Balancing Control Algorithm for an Under-actuated Planar Robot

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

 Time (s)

 q
2 (

ra
d)

Command
Output

Figure 3.9: Trajectory-tracking performance of the robot with imperfections

in the encoders. Since both of these types of error have the same influence on the
controller’s perception of the balanced configuration, considering only one of them is
enough. To investigate the effect of this type of error on the controller’s performance,
a small bias of 1◦ is added to the passive joint’s encoder.

Figures 3.10 and 3.11 show the straightening and crouching motions of the robot
in the presence of all imperfections, including the 1◦ bias. Both figures show signifi-
cant steady-state errors. In the straightening motion there is almost a 6◦ error in the
value of q1 and 18◦ in q2; while in the crouching motion the errors are 2◦ and 10.6◦,
respectively. Figure 3.11 also shows a wobble near the beginning, which is due to the
actuator hitting its saturation limit.

In conclusion, the proposed controller in this chapter is robust to the kinds of
imperfections which are likely to appear in a practical system except those that in-
fluence the controller’s perception of the robot’s balanced configuration. In other
words, the controller is sensitive to errors in the estimate of the direction of gravity.

3.7 Comparison to other Control Algorithms

In this section the performance of the controller is compared with three other bal-
ancing control algorithms in the literature: Spong’s LQR controller [Spong, 1995],
Berkemeier and Fearing’s linear controller [Berkemeier and Fearing, 1999] and Griz-
zle’s nonlinear controller [Grizzle et al., 2005]. First the performance of all four con-
trollers are compared during the straightening motion of the robot when there are
no imperfections in the system. Then the balancing performance of the controllers
are compared when there is a single imperfection in the system, namely a 1◦ bias in
the passive joint’s encoder.

To make the comparisons as fair as possible, the gains have been set as follows.
For Spong’s LQR controller, different values for Q and R have been used by different

§3.7 Comparison to other Control Algorithms 43

0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
 (

ra
d)

q

1
 − π / 2

q
2

Figure 3.10: Robot’s straightening motion with imperfections and encoder bias

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

 Time (s)

 A
ng

le
 (

ra
d)

q
1
 − π / 2

q
2

Figure 3.11: Robot’s crouching motion with imperfections and encoder bias

44 Balancing Control Algorithm for an Under-actuated Planar Robot

researchers [Spong, 1994, 1995; Brown and Passino, 1997; Xin and Kaneda, 2001;
Mahindrakar and Banavar, 2005; Lai et al., 2005; Inoue et al., 2007] but the most
common approach is to set Q to an identity matrix and then adjust the value of
scalar R to get good results in simulations. In this section R is set to 100. Although
assigning these values to Q and R are not the best ones, but simulation results show
that they are good choices and on the basis of the definition of a LQR controller, it
is optimal for the given values of R and Q. For Berkemeier and Fearing’s controller,
all of the poles are placed at −5 which is the same value used in [Berkemeier and
Fearing, 1999]. Simulation results show that using less negative values for the poles
will cause slower convergence and using more negative ones will result in instability.
The convergence rate of Grizzle’s controller is determined by the eigenvalues of the
error equation. Thus, these eigenvalues have the same effect as the poles of the closed
loop system (−p) in the proposed controller in this chapter. Therefore, to have a fair
comparison, both the eigenvalues of the error equation for Grizzle’s controller and
−p have been set to −7.

Figure 3.12 shows how the robot converges to its upright balanced configuration
starting from an initial crouched position (q2 = −π

2) using each of the four control
algorithms. It can be seen that, apart from Berkemeier and Fearing’s linear controller,
which has a large overshoot and a long settling time, the other controllers all per-
form reasonably well. Although Spong’s controller converges to π

2 faster than the
others, but produces much larger overshoot with respect to Grizzle’s controller and
the controller proposed in this chapter. Figure 3.13 shows the same balancing motion

0 0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

 Time (s)

 q
1 (

ra
d)

Spong
Berkemeier
Grizzle
Ours

Figure 3.12: Robot’s straightening motion—perfect modelling

assuming that there is a one-degree bias in the first joint’s encoder. As can be seen,
there is a steady-state error with all four controllers. The magnitude of this error is

§3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 45

0 0.5 1 1.5 2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

 Time (s)

 q
1 (

ra
d)

Spong
Berkemeier
Grizzle
Ours

Figure 3.13: Robot’s straightening motion with 1◦ bias in the passive joint’s encoder

the same in Spong’s and Berkemeier’s controller, and it is roughly one third smaller
for the proposed controller, and one third smaller still for Grizzle’s.

Comparing the balancing performance of Grizzle’s controller and the other ones
in both Figs. 3.12 and 3.13 it is clear that Grizzle’s controller uses a very large torque
at the beginning of the motion to make the robot reach its maximum velocity within
the first few milliseconds of the motion. Having access to such a large torque is not
possible in a real robot. The performance of Grizzle’s controller in a real robot would
be different from that demonstrated in Figs. 3.12 and 3.13 in relation to settling time.

3.8 Balancing Motion of a Curved-foot 2D Balancer Robot

The balancing problem of an inverted pendulum on a rolling contact has been stud-
ied by many researchers [Ha and Yuta, 1994; Nakajima et al., 1997; Lauwers et al.,
2006; Muskinja and Tovornik, 2006; Jung and Kim, 2008; Nagarajan et al., 2009]. The
most famous such study is called ’ballbot’. Ballbot, a robot built at Carnegie Melon
University [Hollis, 2008], consists of a main body (an inverted pendulum) and a
spherical wheel which is free to roll on the ground. Ballbot is a mobile robot that
is able to balance itself at a place as well as move from one place to another one by
rolling the wheel in 3D. In this section, the balancing motion of an inverted double
pendulum robot on a rolling contact is considered. Although both ballbot and a
curved-foot balancer are rolling-contact balancing robots, they are different in terms
of their dimensions, DoF, number of links, etc.

Similar to the 2D balancer, a curved-foot 2D balancer consists of two links con-

46 Balancing Control Algorithm for an Under-actuated Planar Robot

nected by an actuated revolute joint. The difference is that the lower body of a
curved-foot balancer contains a surface called the foot, which makes contact with the
ground at a single point. Fig. 3.14 shows a curved-foot robot model and its param-
eters. In this figure, q1 is the angle between the lower body and the horizontal axis
(ground), and x and y are the horizontal and vertical locations of point P which is
the connection point between the lower body and the foot. As is shown in Fig. 3.14,
the length of the lower body (l1) and the location of its CoM (lc1) are measured from
point P. The location of the contact point with respect to the reference coordinate
frame is denoted by s. The origin of the reference frame (see Fig. 3.14) is a point on
the ground which coincides with P when the lower body is vertical.

���, ��

�

��

	��
	�

	��

	�

��

Figure 3.14: Models and parameters of a curved-foot 2D balancer robot

It is assumed that the ground is flat and horizontal, and that there is no slipping
or loss of contact between the foot and the ground. So the equations of motion for
the curved-foot 2D balancer robot in Fig. 3.14 are

fx = cẍ− (c4 sin(q1) + c5 sin(q1 + q2))q̈1 − c5 sin(q1 + q2)q̈2

− c4 cos(q1)q̇2
1 − c5 cos(q1 + q2)(q̇1 + q̇2)

2 , (3.38)

fy = cÿ + (c4 cos(q1) + c5 cos(q1 + q2))q̈1 + c5 cos(q1 + q2)q̈2

− c4 sin(q1)q̇2
1 − c5 sin(q1 + q2)(q̇1 + q̇2)

2 + cg , (3.39)

fxy + fy(s− x) = −(c4 sin(q1) + c5 sin(q1 + q2))ẍ

+ (c4 cos(q1) + c5 cos(q1 + q2))ÿ + (c1 + c2 + 2c3 cos(q2))q̈1

+ (c2 + c3 cos(q2))q̈2 − 2c3 sin(q2)q̇1q̇2

− c3 sin(q2)q̇2
2 + c4g cos(q1) + c5g cos(q1 + q2) , (3.40)

§3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 47

τ = −c5 sin(q1 + q2)ẍ + c5 cos(q1 + q2)ÿ + (c2 + c3 cos(q2))q̈1 + c2q̈2

+ c3 sin(q2)q̇2
1 + c5g cos(q1 + q2) , (3.41)

where fx and fy are the ground reaction forces exerted to the robot via its contact
point (i.e. the point (s, 0)). The left hand side of (3.40) is in fact the moment of the
contact force about P. Since the contact between the robot’s foot and the ground
is modelled as a rolling-contact joint with no slipping or loss of contact, then x, y
and s are always dependent on the joint variable which is q1. Therefore, based on
the curve shape of the foot, there always exist relationships which express x, y and
s as functions of q1. Using these relationships, it is possible to express ẍ and ÿ in
terms of q1 and its derivatives, and consequently they can be eliminated from (3.38)
and (3.39). Hence, fx and fy can be written in terms of q1, q2 and their derivatives.
Having expressed fx, fy and s in terms of the joint angles and their derivatives, (3.40)
and (3.41) reduce to two equations with two unknowns (q̈1, q̈2) where τ is the control
torque.

Since the contact point is not a fixed point then (3.5) and (3.6) are not valid which
means that the control law (3.11) and the alternative control law (3.12) are not equiv-
alent for a curved-foot balancer. To control the balancing motion on a rolling contact,
the alternative control law (3.12) is used, replacing L, X and Ẋ by Lc, Xc and Ẋc,
respectively. The resulting control law is

τ = −kvẊc − kxXc + kpLc + ks(qd
2 − q2) + τg , (3.42)

where Lc is the angular momentum of the robot about its contact point, Xc is the
horizontal location of the CoM relative to the contact point and Ẋc is the horizontal
velocity of the CoM relative to the contact point. Note that the radius of curvature
of the foot at the contact point is, in general, only a piecewise-continuous function
of q1 and if it changes discontinuously at some values of q1. Then the velocity of
the contact point also changes discontinuously, meaning that Ẋc is also capable of
changing discontinuously.

The angular momentum of the robot about its contact point is

Lc = m1(~r c
1 ×~̇r c

1) + m2(~r c
2 ×~̇r c

2) + I1q̇1 + I2(q̇1 + q̇2) , (3.43)

where ~r c
1 and ~r c

2 are the vectors pointing to the CoM of the links from the contact
point. If î and ĵ denote unit vectors in the horizontal and vertical directions, then

~r c
1 = (x− s + lc1 cos(q1))î + (y + lc1 sin(q1)) ĵ , (3.44)

~r c
2 = (x− s + l1 cos(q1) + lc2 cos(q1 + q2))î

+ (y + l1 sin(q1) + lc2 sin(q1 + q2)) ĵ . (3.45)

Hence
~̇r c

1 = (ẋ− ṡ− lc1 sin(q1)q̇1)î + (ẏ + lc1 cos(q1)q̇1) ĵ , (3.46)

48 Balancing Control Algorithm for an Under-actuated Planar Robot

~̇r c
2 = (ẋ− ṡ− l1 sin(q1)q̇1 − lc2 sin(q1 + q2)(q̇1 + q̇2))î

+ (ẏ + l1 cos(q1)q̇1 + lc2 cos(q1 + q2)(q̇1 + q̇2)) ĵ . (3.47)

By replacing (3.44), (3.45), (3.46) and (3.47) into (3.43) we have

Lc = m1(x + lc1 cos(q1))(ẏ + lc1 cos(q1)q̇1)−m1(y + lc1 sin(q1))(ẋ− lc1 sin(q1)q̇1)

+ m2(x + l1 cos(q1) + lc2 cos(q1 + q2))(ẏ + l1 cos(q1)q̇1 + lc2 cos(q1 + q2)(q̇1 + q̇2))

−m2(y + l1 sin(q1) + lc2 sin(q1 + q2))(ẋ− l1 sin(q1)q̇1 − lc2 sin(q1 + q2)(q̇1 + q̇2))

+ m1ṡ(y + lc1 sin(q1))−m1s(ẏ + lc1 cos(q1)q̇1)

+ m2ṡ(y + l1 sin(q1) + lc2 sin(q1 + q2))

−m2s(ẏ + l1 cos(q1)q̇1 + lc2 cos(q1 + q2)(q̇1 + q̇2)) + I1q̇1 + I2(q̇1 + q̇2) . (3.48)

Simplifying the above equation, the angular momentum of the robot about its contact
point is

Lc = x(cẏ + c4 cos(q1)q̇1 + c5 cos(q1 + q2)(q̇1 + q̇2))

+ y(−cẋ + c4 sin(q1)q̇1 + c5 sin(q1 + q2)(q̇1 + q̇2))

− ẋ(c4 sin(q1) + c5 sin(q1 + q2)) + ẏ(c4 cos(q1) + c5 cos(q1 + q2))

+ q̇1(c1 + c2 + 2c3 cos(q2)) + q̇2(c2 + c3 cos(q2))

− s(cẏ + c4 cos(q1)q̇1 + c5 cos(q1 + q2)(q̇1 + q̇2))

+ ṡ(cy + c4 sin(q1) + c5 sin(q1 + q2)) . (3.49)

According to [Featherstone, 2012], the shape of the foot (i.e. its radius of curva-
ture at the contact point) can substantially influence the balancing performance of a
curved-foot robot. To investigate the performance of the proposed control algorithm
in balancing robots with different foot shapes, two foot shapes are considered in this
section: 1) a circular arc which has a constant radius of curvature at the contact point,
and 2) a general convex curve. The former is called wheelfoot balancer and the latter
is called camfoot balancer in this section. Note that no effort has been made to op-
timize the inertia parameters of the robots, radius of circular arc of the wheelfoot or
shape of the camfoot.

3.8.1 Wheelfoot 2D Balancer

The wheelfoot 2D balancer is a special case of curved-foot 2D balancers in which the
foot is a circular arc with a constant radius of R. So for the wheelfoot balancer we
have

s = R(
π

2
− q1) =⇒ ṡ = −Rq̇1 , (3.50)

x = s− R cos q1 =⇒ ẋ = −Rq̇1 + R sin(q1)q̇1 , (3.51)

§3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 49

y = R− R sin(q1) =⇒ ẏ = −R cos(q1)q̇1 . (3.52)

Replacing (3.50), (3.51) and (3.52) into (3.49) will give us the angular momentum of
the wheelfoot 2D balancer about the contact point as

Lc = (c1 + c2 + 2c3 cos(q2))q̇1 + (c2 + c3 cos(q2))q̇2

− 2Rc4q̇1 + R(c4 sin(q1)q̇1 + c5 sin(q1 + q2)(q̇1 + q̇2))

+ cR2(1− sin(q1))q̇1 − Rc5 cos(q2)(2q̇1 + q̇2) . (3.53)

Also using (3.50), (3.51) and (3.52), the motion equations can be simplified to

0 = q̈1(c1 + c2 + 2c3 cos(q2)) + q̈2(c2 + c3 cos(q2)) + Rc5 sin(q2)(2q̇1q̇2 + q̇2
2)

+ q̈1(cR(1− sin(q1)) + c4 sin(q1) + c5 sin(q1 + q2)− c4 − c5 cos(q2))2R

+ q̈2(sin(q1 + q2)− cos(q2))Rc5 − c3 sin(q2)(2q̇1 + q̇2)q̇2

− cR2 cos(q1)q̇2
1 + Rc4 cos(q1)q̇2

1 + Rc5 cos(q1 + q2)(q̇1 + q̇2)
2

+ g(c4 cos(q1) + c5 cos(q1 + q2)− cR cos(q1)) , (3.54)

τ = q̈1(sin(q1 + q2)− cos(q2))Rc5 + (c2 + c3 cos(q2))q̈1 + c2q̈2

− Rc5 sin(q2)q̇2
1 + c3 sin(q2)q̇2

1 + c5g cos(q1 + q2) . (3.55)

Simulations have been conducted for straightening and crouching motions of
a wheelfoot balancer where the radius of its foot is 5cm. The parameters of the
wheelfoot balancer are the same as the simulator’s model of the 2D balancer listed
in Table 3.1. To derive the characteristic equation, the motion equations (3.54) and
(3.55) are linearized about the target position using the method described in 3.3. Thus
the characteristic equation at the desired configuration for the straightening motion
(qd

2 = 0) is

0 = λ4 + (5.42433kv − 0.73795kp)λ
3 + (5.42433kx − 28.72984 + 187.24507ks)λ

2

+ (39.74559kp)λ + (−2701.98917ks) , (3.56)

and for the crouching motion (qd
2 = −π

2) is

0 = λ4 + (2.98359kv − 0.20973kp)λ
3 + (2.98359kx − 24.73253 + 71.01911ks)λ

2

+ (19.21326kp)λ + (−1226.96263ks) . (3.57)

In both cases, the gains are computed using the method described in section 3.4,
placing all the poles of the closed-loop system at −7.

Figure 3.15 shows the straightening motion of the wheelfoot balancer moving
from its initial crouched position (q2 = −π

2) and with zero initial velocity. The initial

50 Balancing Control Algorithm for an Under-actuated Planar Robot

value of q1 is calculated for perfect balance given q2 = −π
2 . Although this motion is

very similar to the straightening motion of the 2D balancer in Fig. 3.2, it is noticeably
slower. Of course it is possible to produce quicker straightening motions by choosing
more negative values for the location of the poles at the cost of a larger overshoot.

Figure 3.16 shows the corresponding crouching motion, in which the wheelfoot
balancer starts in a balanced upright position (q2 = 0) and moves to a balanced
crouching position (q2 = −π

2). Comparing this motion with the crouching motion of
the 2D balancer (Fig. 3.3), it can be seen that the initial movement of the wheelfoot
balancer in the opposite direction is much larger (almost 2.5 times). However, the
wheelfoot balancer converges to the desired position (qd

2 = −π
2) a bit quicker than the

2D balancer. During the crouching motion of the wheelfoot balancer, q1 reaches its
desired final value almost 0.5s before q2 does. It implies that the physics of balancing
does not require q1 and q2 to reach their final positions, simultaneously.

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

 Time (s)

 A
ng

le
s

(r
ad

)

q
1
−π/2

q
2

Figure 3.15: straightening motion of the wheelfoot balancer

3.8.2 Camfoot 2D Balancer

For the curve of the camfoot balancer the clothoid function (or Euler spiral) is used
because of its interesting and useful property that the curvature (κ) of the clothoid
varies linearly with its variable parameter (θ):

κ =
θ

ρ
,

§3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 51

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

 Time (s)

 A
ng

le
s

(r
ad

)
q

1
−π/2

q
2

Figure 3.16: Crouching motion of the wheelfoot balancer

where ρ is a constant parameter. The equations of the clothoid are

u = ρ
√

π FresnelS(
θ√
π
) , (3.58)

w = ρ
√

π FresnelC(
θ√
π
) , (3.59)

where

FresnelS(
θ√
π
) =

∫ θ/
√

π

0
sin(

πξ2

2
)dξ , (3.60)

FresnelC(
θ√
π
) =

∫ θ/
√

π

0
cos(

πξ2

2
)dξ . (3.61)

Fig. 3.17 shows an example of a clothoid where θ varies between −10 and 10 and ρ

is 0.1.
The foot of the camfoot balancer is composed of a clothoid curve segment and its

mirror image, the two being joined to form a shield shape with a sharp point at the
bottom (see Fig. 3.18). The curvature of the clothoid is 15 immediately adjacent to
the sharp point, and increases gradually with increasing the distance from the point.
The value of ρ is set to 0.1 implying that the starting value for θ is 1.5. The radius of
curvature of the foot at the contact point is plotted against its corresponding value of
q1 in Fig. 3.19. According to this figure, there are step changes in the radius of curva-
ture to both sides of q1 = π

2 which will affect the controller’s performance. Including
these discontinuities, it will be possible to observe how the controller deals with a

52 Balancing Control Algorithm for an Under-actuated Planar Robot

−0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15

 u

 w

Figure 3.17: A clothoid plot with ρ = 0.1

step change in velocity due to the step change in radius of curvature. Therefore, the
balancing motion of the camfoot is expected to be different from the wheelfoot due
to 1) variable radius of curvature, and 2) the step change in the radius of curvature.

The kinematic and inertia parameters that are used in simulations for the camfoot
balancer are the same as for the wheelfoot balancer and the 2D balancer. In an
upright configuration, the camfoot is on its sharp point so the characteristic equation
for its straightening motion and consequently the controller’s gains are the same
as they are for the 2D balancer. In a crouched configuration, the camfoot might
either pivot on its sharp point or roll on the clothoid depending on qd

2. Note that
characteristic equations of the camfoot balancer and the 2D balancer are the same,
as long as the contact point at the desired configuration is the sharp point of the
foot. The desired value of q2 for the crouching motion in this section is −π

2 . Since
the contact point at qd

2 = −π
2 is on the clothoid, the motion equations of the camfoot

balancer are linearized about that point to obtain the characteristic equation as

0 = λ4 + (3.56652kv − 0.12747kp)λ
3 + (2.63407kx − 22.1207 + 68.0053ks)λ

2

+ (16.3538kp − 6.21586kv)λ + (−1065.42ks) . (3.62)

Again the poles of the closed-loop system are placed at −7 and the gains are com-
puted using the method described in section 3.4.

Figure 3.20 shows the straightening motion of the camfoot balancer. The robot
starts from an initial balanced position (q2 = −π

2), with its contact point on the

§3.8 Balancing Motion of a Curved-foot 2D Balancer Robot 53

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

 x (cm)

 y
 (

cm
)

Figure 3.18: The shape of the foot of the camfoot balancer

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

 q
1
 (rad)

 R
ad

iu
s

(c
m

)

Figure 3.19: Radius of curvature of the camfoot balancer at the contact point

54 Balancing Control Algorithm for an Under-actuated Planar Robot

clothoid, rolls on its curved-foot and balances itself on the sharp point of the foot at
the desired configuration (qd

2 = 0). Instants of transitions between rolling and pivot-
ting motions are more clear in Fig. 3.21 which shows ṡ during the motion. The robot
is pivotting when ṡ = 0 and it is rolling at the other times. It can be seen in Fig. 3.21
that there are two rolling motions during the straightening motion. In fact, the robot
reaches the desired configuration within the first 0.5s of the motion (see Fig. 3.20) but
because of the high speed (ṡ > 0.55 m

s), it misses the desired configuration and con-
sequently rolls on the opposite side. Large overshoots of the joint angles in Fig. 3.20,
between t = 0.5s and t = 1s, are due to the sudden change from rolling to pivotting.
This sudden change, when the robot’s momentum is quite high, makes overshoots
unavoidable.

0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 Time (s)

 A
ng

le
s

(r
ad

)

q
1
−π/2

q
2

Figure 3.20: Straightening motion of the camfoot balancer

The joint angles during the crouching motion of the camfoot balancer are shown
in Fig. 3.22. Sudden slope changes in q1 and q2 curves at about t = 0.8s, which is more
obvious in ṡ graph in Fig. 3.23, shows a transition from pivotting to rolling motion.
There is only one rolling motion during the crouching motion. The robot slowly
rolls on the clothoid and then balance itself at the desired crouched configuration
(qd

2 = −π
2).

3.9 Summary

In this chapter, a new control algorithm based on angular momentum is presented
for balancing an under-actuated planar robot. The controller is able to stabilize the
robot in any unstable balanced configuration in which the robot is controllable, and

§3.9 Summary 55

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 Time (s)

 V
el

oc
ity

 o
f t

he
 c

on
ta

ct
 p

oi
nt

 (
m

/s
)

Figure 3.21: Velocity of the contact point (ṡ) during the straightening motion of the
camfoot balancer

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

 Time (s)

 A
ng

le
s

(r
ad

)

q
1
−π/2

q
2

Figure 3.22: Crouching motion of the camfoot balancer

56 Balancing Control Algorithm for an Under-actuated Planar Robot

0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

 Time (s)

 V
el

oc
ity

 o
f t

he
 c

on
ta

ct
 p

oi
nt

 (
cm

/s
)

Figure 3.23: Velocity of the contact point (ṡ) during the crouching motion of the
camfoot balancer

is also able to follow a class of arbitrary trajectories without losing balance. Simula-
tion results show the good performance of the controller in balancing and trajectory
tracking motions of the robot. The simulations also show that the proposed controller
is robust to significant imperfections in the system, such as errors in the controller’s
dynamic model of the robot and imperfections in the sensors and actuators. The
new controller is compared with three existing balancing controllers and is shown to
outperform them. Also it is shown in simulations that the new controller is able to
balance a planar under-actuated robot with an arbitrary shape of the foot on a rolling
contact. Simulation results of the balancing motion of the camfoot balancer show the
capability of the controller in dealing with sudden changes in the curve of the foot
(radius of curvature of the contact point).

Chapter 4

Hopping Motion of an
Under-actuated Planar Robot

This chapter considers the problem of hopping motion control of a knee leg robot
with one actuator. This robot is called ”2D hopper” in this chapter. The 2D hopper is
similar to the acrobot which is used in [Berkemeier and Fearing, 1998]. Berkemeier
and Fearing were first to study hopping in a knee leg hopper with only one actu-
ator. Their proposed controller is briefly explained in subsection 1.1.1.2. The main
difference between their controller and the one that is introduced in this chapter is in
the flight phase control algorithm. In Berkemeier and Fearing’s controller the robot
rotates its leg during the flight phase and lands in the same configuration as it takes
off the ground. However, the objective of the flight phase in the new controller is
to control the hop length and land the robot in any configuration from which it can
recover its balance.

Unlike previous studies on hopping robots, this chapter does not consider contin-
uous hopping motion. Instead a single-hop motion is considered which consists of
a crouch-and-launch phase, a flight phase, a landing, and a balance recovery phase.
During a single-hop motion the robot starts and ends both in an upright balanced
configuration. The balancing controller which was already introduced in chapter 3 is
used to balance the robot during the balance recovery phase. This controller is also
extended to conduct trajectory-tracking performance which is used to implement the
crouch-and-launch and flight phases. During the crouch-and-launch phase, the robot
is commanded to follow a specified trajectory to intentionally lose its balance and be
prepared for the hop. During the flight phase, the horizontal location of the foot is
controlled by using the trajectory-tracking controller.

The performance of the proposed control algorithm during a complete hop is
demonstrated by simulation. Also, it will be shown in simulation that the controller
is able to cope with slipping between the foot and the ground, which can happen
during crouching, at lift-off, and after landing. Most of the results presented in this
chapter are published in [Azad and Featherstone, 2013].

57

58 Hopping Motion of an Under-actuated Planar Robot

4.1 Robot Model and Motion Equations

The mechanism of the 2D hopper consists of two links connected to each other by an
actuated revolute joint. Fig. 4.1 shows a schematic diagram of the 2D hopper. It is

�� ��
����

���
����

���
���

������ ���
(a)� (b) �

Figure 4.1: Planar hopper model, (a) generalized coordinates, (b) parameters

assumed that the tip of the lower leg (which is called the foot) is the only point that
can make contact with the ground. The motion equations for this robot are 1:

fx = cẍ− (c4 sin(q1) + c5 sin(q1 + q2))q̈1 − c5 sin(q1 + q2)q̈2

− c4 cos(q1)q̇2
1 − c5 cos(q1 + q2)(q̇1 + q̇2)

2 (4.1)

fy = cÿ + (c4 cos(q1) + c5 cos(q1 + q2))q̈1 + c5 cos(q1 + q2)q̈2

− c4 sin(q1)q̇2
1 − c5 sin(q1 + q2)(q̇1 + q̇2)

2 + cg (4.2)

0 = −(c4 sin(q1) + c5 sin(q1 + q2))ẍ + (c4 cos(q1) + c5 cos(q1 + q2))ÿ

+ (c1 + c2 + 2c3 cos(q2))q̈1 + (c2 + c3 cos(q2))q̈2 − 2c3 sin(q2)q̇1q̇2

− c3 sin(q2)q̇2
2 + c4g cos(q1) + c5g cos(q1 + q2) (4.3)

τ = −c5 sin(q1 + q2)ẍ + c5 cos(q1 + q2)ÿ + (c2 + c3 cos(q2))q̈1 + c2q̈2

+ c3 sin(q2)q̇2
1 + c5g cos(q1 + q2) (4.4)

where I1 and I2 are the moments of inertia of the links about their CoM, fx and fy are
the contact forces exerted from the ground to the foot, g is the acceleration of gravity,

1Equations (4.1)-(4.4) are the same as the motion equations of a curved-foot balancer (3.38)-(3.41)
when the moment of the contact force about P is zero.

§4.1 Robot Model and Motion Equations 59

and
c = m1 + m2 , c1 = m1l2

c1 + m2l2
1 + I1 ,

c2 = m2l2
c2 + I2 , c3 = m2l1lc2 ,

c4 = m1lc1 + m2l1 , c5 = m2lc2 .

When the foot is in contact with the ground (the robot is in its stance phase) and it
is not sliding, it is possible to consider the robot as a two degrees of freedom balancer
robot. By neglecting the values of x and y in (4.1)-(4.4), the motion equations for the
hopper during the stance phase are:

0 = (c1 + c2 + 2c3 cos(q2))q̈1 + (c2 + c3 cos(q2))q̈2 − 2c3 sin(q2)q̇1q̇2

− c3 sin(q2)q̇2
2 + c4g cos(q1) + c5g cos(q1 + q2) , (4.5)

τ = (c2 + c3 cos(q2))q̈1 + c2q̈2 + c3 sin(q2)q̇2
1 + c5g cos(q1 + q2) , (4.6)

which are the same as the motion equations for the 2D balancer in chapter 3.

The parameters for the 2D hopper that have been used in the simulations in this
chapter are (cf. the acrobot’s parameters in [Berkemeier and Fearing, 1998]):

m1 = 2kg , m2 = 14kg , l1 = 0.5m , l2 = 0.75m

I1 = lc1 = 0 , lc2 = 0.375 , I2 = m2l2
c2 .

Contact between the robot’s foot and the ground is modelled as a nonlinear compli-
ant contact with Coulomb friction, using a planar version of the 3D contact model
described in chapter 2. According to (2.22) and (2.30), the forces acting on the foot in
the normal and tangent directions are

fy =

{
0 if y ≥ 0
max(0,−√−y (Kny + Dnẏ)) if y < 0

(4.7)

and

fx =

{
µ fy · ft

| ft| if | ft| > µ fy

ft otherwise
, ft =

{
0 if y ≥ 0
−√−y(Ktu + Dt ẋ) if y < 0

, (4.8)

where Kn and Dn are the normal and Kt and Dt are the tangential stiffness and
damping coefficients, respectively, u is the ground shear deformation and µ is the
coefficient of friction. The parameter values used in the simulations are

Kn = 8.5× 106 , Kt = 12.75× 106 ,

Dn = Dt = 3.1× 105 , µ = 0.4 .

60 Hopping Motion of an Under-actuated Planar Robot

4.2 Control Strategies

As already mentioned, this chapter considers a single-hop instead of continuous
hopping motion and therefore studies a hopping gait in which the robot starts from
an upright balanced configuration and ends in the same balanced configuration. The
motion phases of such a hopping gait, after starting from a balanced configuration,
are: launching (from the beginning to the instant of take-off), flight, and landing
and balancing again at the end. The landing phase starts from the moment the foot
touches the ground, and includes a short period when the foot is sliding, which will
physically happen in a real robot. Since the controller for balancing the robot that
was proposed in chapter 3 is able to balance the robot from the beginning of the
landing phase without any further setup, the hopping motion is divided into three
phases: launching, flight and balancing.

To control the robot’s motion during the balancing phase, the balancing controller
described in chapter 3 is used. For the other two phases, a modified version of the
balancing controller is used which is able to track a prescribed trajectory. Before
explaining the control strategies of the launching and flight phases, the trajectory-
tracking controller that is used during these two phases is introduced in the following
subsection.

4.2.1 Trajectory-tracking Controller

For the purpose of trajectory tracking, the control law (3.8) is modified as

τ = −kv(Ẋ− Ẋd)− kx(X− Xd) + kp(L− Ld) , (4.9)

where X is the horizontal location of the CoM with respect to the foot, L is the
angular momentum of the robot about its foot, Ld is the desired value of L and Xd is
the desired value of X within the desired trajectory. When the robot is in its stance
phase (without slipping), it is possible to calculate Ld from Xd using (3.5) as follows:

L̇d = −cgXd =⇒ Ld = −cg
∫

Xddt .

For example, if the desired trajectory for X is a sine-wave function of time, such
as Xd = A sin(ωt), where A and ω are constants (with some limits on their values),
then the controller is able to track this trajectory without losing balance. Fig. 4.2
shows an example of tracking a sine-wave trajectory for X. In this example Ld is
chosen to be

Ld = ρ cos(ωt) ,

where ρ = π/2 and ω = π. Therefore,

L̇d = −ρω sin(ωt) = −cgXd =⇒ Xd = A sin(ωt) ,

where A = ρω
cg . Since the robot (which is under-actuated) is physically unable to fol-

§4.2 Control Strategies 61

low this trajectory exactly while keeping its balance, it follows the nearest physically
possible trajectory instead. This is the reason for the relatively large tracking errors
shown in Fig. 4.2.

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

 Time (s)

 X
 (

cm
)

desired
actual

Figure 4.2: Performance of the trajectory-tracking controller in following a sine-wave
function

The trajectory-tracking controller is designed to be used in the launching and
flight phases of the hopping motion of the 2D hopper. This controller is different
from the one that is described in section 3.5. The main difference is that the controller
described in this section is designed to follow a prescribed trajectory for X whereas
the controller described in section 3.5 follows a desired trajectory for q2. Therefore
the control laws are different. However, in both cases the commanded trajectories
may be physically impossible to be exactly followed while the robot is maintaining
its balance.

4.2.2 Launching Phase

In the launching phase, the objective is to move the robot from its initial balanced
position to a desired dynamic state which is called the launching state in this chapter.
The launching state is an unstable configuration at the end of the launching phase
in which the robot has positive velocity in both the horizontal and vertical directions
and is ready to hop. To implement the launching phase, the robot must be able to de-
liberately lose its balance and pass through a predetermined unstable configuration
for an instant which is the take-off instant. In order to move the robot from its initial
state at the balanced position to the desired state at the launching configuration, the
trajectory-tracking controller, which is introduced in subsection 4.2.1, is used.

The trajectory-tracking controller in (4.9) uses the angular momentum about the
foot (L) and the horizontal displacement and velocity of the CoM with respect to
the foot (X and Ẋ). To define a trajectory between the initial and final states of the
launching phase, it is hence necessary to map the state variables to L, X and Ẋ and
then find a suitable trajectory between their initial and final values.

62 Hopping Motion of an Under-actuated Planar Robot

A time-reversal technique is employed to find a suitable reference trajectory for
the launching phase. This technique works as follows. First, the 2D hopper’s ini-
tial conditions are set to the desired lift-off state (the launching state) but with the
reversed launch velocities. Then the balancing controller (3.11) is applied to the
robot to bring it to its upright balanced configuration. The resulting trajectory, when
time-reversed, is a suitable reference trajectory for the launching phase. Note that
this trajectory is not the only one that can be used in the launching phase but is
straight-forward to calculate. In general, any trajectory between the upright bal-
anced configuration and the launching state can serve as the reference trajectory if
the relationships between Ld, Xd and Ẋd are valid within the trajectory.

Fig. 4.3 shows an example of the trajectory-tracking performance of the robot dur-
ing the launching phase. In this example, the robot starts from a stationary balanced
upright position and aims to reach the launching state ηd = (2.04,−1.45,−4.4, 7.5),
where ηd denotes the desired values of η = (q1, q2, q̇1, q̇2). To obtain the value of
ηd, a trial-and-error procedure is employed. The objective of this process was to
find a suitable launching state that results in a successful hop with a desired hop
length. Different values of launching states have been tried using the dynamics sim-
ulator to achieve a successful hop in which the robot can recover its balance after
landing. The above mentioned value of ηd is a suitable launching state for a 50cm
hop length. Note that this is not the only launching state that can provide such a
successful hop with 50cm length. In fact, according to the simulation results (of the
trial-and-error process), there are many suitable values between (2,−1.4,−4.25, 7.2)
and (2.07,−1.5,−4.55, 7.8) that can be used as the launching state.

The solid and dashed curves in Fig. 4.3 show X and Xd versus time, respectively.
In this figure the beginning part of the reference trajectory has been cut off and
therefore Xd is not started from zero at t = 0. The part of the reference trajectory that
is not used is the end part of the balancing motion in the time-reversal technique in
which the robot is quite close to its upright balanced configuration. Cutting off this
part of the motion helps the robot to make faster crouching and launching motions.

According to Fig. 4.3, there is almost no tracking error before t = 0.8s except in
the beginning part of the motion which is due to the different start points. After
t = 0.8s, the error starts to grow up until about t = 1.3s from which time onwards it
stays almost constant until the end. The reason for this error can be seen in Fig. 4.4,
which shows the normal component of the ground-reaction force acting on the foot
(fy) and also the ratio of the tangent and normal components (fx/ fy) along with the
same graph of X in Fig. 4.3. The ratio fx/ fy is limited to ±0.4 by the friction cone.
It can be seen from these graphs that this ratio decreases after t = 0.8s (and more
quickly after t = 0.9s) until it hits the limit at about t = 1s. This decrease means
that there is an increase in the absolute value of fx during this period (t = 0.8s and
t = 0.9s) and therefore more pre-sliding movement of the foot on the ground.

As can be seen in the graphs in Fig. 4.4, the normal force is dropped to zero, and
the contact between the foot and the ground is lost at about t = 1.1s. The reason
for the drop in normal force and loss of contact is that the robot is crouching rapidly
at this time, and so its CoM is accelerating rapidly downwards. Also it can be seen

§4.2 Control Strategies 63

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−4

−2

0

2

4

6

8

 Time (s)

 X
 (

cm
)

desired
actual

Figure 4.3: Horizontal location of the CoM of the robot with respect to its foot during
the launching phase

that the foot is slipping for about 0.07s before losing and 0.04s after regaining its
contact with the ground. The spike in the normal force graph, at a very short time
before t = 1.2s, shows the instant of the impact between the foot and the ground. The
slipping ends at approximately t = 1.22s, which is when the robot starts to decelerate
as it reaches the end of the crouch and begins to launch itself upwards. The tracking
controller is back on track about 0.1s after the slipping stops and follows the desired
trajectory but with a little bit of time delay. There is also a short period just before
lift-off when the foot is slipping backwards. All three graphs end when lift-off is
supposed to happen, which is a few milliseconds before it actually happens. This is
why the normal force has not dropped all the way to zero at the end of the graph.
The spike at the beginning of the normal force is because of the impact between the
foot and the ground at t = 0 since the initial value of y is set to zero.

As already mentioned, the reference trajectory that is used in the launching phase
is not necessarily the optimal trajectory. However, the overall performance of the
trajectory-tracking controller during the launching motion is reasonably good. The
most important aspect of this motion is the accuracy at the end of the trajectory.
This accuracy can be observed in the difference between the final actual state of
the launching motion, which is denoted by ηa, and the launching state (ηd). The
final actual state is calculated as follows. First, a measure which is called total error
percentage is defined for each instant of the launching motion as

TEP =
4

∑
i=1
|η(i)− ηd(i)

ηd(i)
| ,

64 Hopping Motion of an Under-actuated Planar Robot

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−4

−2

0

2

4

6

8

 X
 (

cm
)

desired
actual

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.5

0

0.5

 fx
/fy

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

 Time (s)

 N
or

m
al

 F
or

ce
 (

N
)

Figure 4.4: Normal force and the ratio between the friction force and normal force
during the launching phase

§4.2 Control Strategies 65

where
η(1) = q1 , η(2) = q2 , η(3) = q̇1 , η(4) = q̇2 .

Thus, TEP is an array with the same length as the time array of the simulation.
Since TEP is always positive, then ηa is defined to be state variables of the robot
at the instant in which TEP has its minimum value. For the launching motion in
this section, the final actual state variables are ηa = (2.0631,−1.443,−4.4038, 7.4806)
which are quite close to the desired values.

4.2.3 Flight Phase

When the robot takes off from the ground, the ability to control its motion signif-
icantly decreases. During the flight phase, the angular momentum of the robot is
constant, the CoM travels along a given trajectory which cannot be changed by the
controller, and the robot has 3 degrees of under-actuation. Also, in the flight phase,
because of the mass difference between the robot’s upper and lower bodies (the lower
body is much lighter), applying a torque to the actuator causes much more move-
ment to the lower body than to the upper one. This means that controlling the upper
body’s motion is much more difficult than for the lower body’s motion. For these rea-
sons, the objective of the flight-phase control is limited to controlling foot placement
at landing.

To control the location of the foot at landing, the trajectory-tracking controller is
used to bring the robot from the launching state to the desired landing state (includ-
ing the desired location of the foot at landing) during the flight phase. The launching
state is the initial state for the flight phase. To use the trajectory-tracking controller,
the first step is to define a reference trajectory for X between the launching state and
the desired landing state. If XG and x are the absolute horizontal displacement of
the CoM and foot of the robot, respectively, then

X = XG − x . (4.10)

XG is a given function of time right after the take-off instant, so by defining a desired
trajectory for x, the desired value of X can be calculated easily. A sigmoid function of
the form f (z) = 1/(1 + e−z) is used as a reference function for x so that the forward
velocity of the foot at the landing instant will be zero. This helps the robot not to
slide (or to slide only a little). The actual trajectory for x is chosen to be

x =
LH

1 + e−(a1t+a0)
, (4.11)

where LH is the desired hop length, a0 = −6, a1 = 12/TH and TH is the flight-phase
duration time.

Therefore, the desired trajectory for the foot during the flight phase depends on
the desired value of the hop length and the flight duration. Using (4.10) and (4.11),

66 Hopping Motion of an Under-actuated Planar Robot

we have

Ẋ = ẊG − ẋ = ẊG −
a1LHe−(a1t+a0)

(1 + e−(a1t+a0))2
. (4.12)

Since ẊG is a given function of time during the flight phase, so the desired value of
Ẋ within the desired trajectory can be easily calculated by using the above equation.
Because the angular momentum of the robot is not controllable during this phase, kp

is set to zero and therefore the control law for the purpose of the trajectory-tracking
is

τ = −kv(Ẋ− Ẋd)− kx(X− Xd) . (4.13)

Fig. 4.5 shows the controller’s trajectory tracking performance during the flight
phase for a hop with a desired length of 50cm. The flight phase duration is 0.286s.
The small displacement from zero at the beginning of the graph shows the amount
of slipping of the foot during the crouching phase. The hop length is the difference
between x at the take-off and landing instants which is 49.26cm in this case. The
final location of the foot after the hop is 53.39cm and the difference between these
two values (53.39− 49.26 = 4.07cm) is the total amount of slipping of the foot during
the hopping motion.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

45

50

55

 Time (s)

 x
 (

cm
)

desired
actual

Figure 4.5: Horizontal location of the foot during the flight phase

4.2.4 Landing and Rebalancing

Once the foot touches the ground, the controller switches from trajectory-tracking to
balancing in order to bring the robot to its upright balanced configuration. Fig. 4.6
shows the position and velocity of the foot during the flight phase represented in

§4.3 Discussion on Simulation Results 67

Fig. 4.5 and the first 0.2 seconds of rebalancing. The landing moment (t = 0.286s) co-
incides with the obvious sharp discontinuities in both the ẋ and ẏ graphs. According
to these graphs, the forward velocity of the foot (ẋ) at this instant is close to zero, but
the downward velocity (|ẏ|) is about 2.5m/s.

When the foot hits the ground, most of the lower body’s momentum is absorbed
in the impact and some of it is converted to forward motion of the foot. Therefore
ẋ increases suddenly right after the impact (i.e. the landing instant) and the foot
slips forward a little. However, no further slipping occurs during the rest of the
rebalancing motion.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

 x
 (

m
)

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

 x
do

t (
m

/s
)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

 Time (s)

 y
 (

m
)

0 0.1 0.2 0.3 0.4

−2

0

2

4

 Time (s)

 y
do

t (
m

/s
)

Figure 4.6: Translational state variables and their derivatives during flight phase

4.3 Discussion on Simulation Results

This section investigates the simulation results of a single-hop motion with 50cm
length which is discussed in the previous section. Figure 4.7 shows the absolute
vertical displacement of the CoM (YG) against its horizontal displacement (XG). The
start and end point of the graph show the location of the CoM when the robot is
in its upright balanced configuration at either end. At the beginning of the motion,
the robot tilts slightly forward and consequently brings the x component of the CoM
from zero to a positive value. Then the crouching phase starts and YG decreases
quite rapidly to about 45cm while XG does not change much (by about 5cm). When

68 Hopping Motion of an Under-actuated Planar Robot

YG reaches its minimum value, the launching motion starts. The objective of this
motion is to accelerate the robot in positive directions of XG and YG and give it
enough momentum to be able to hop. As a result, both XG and YG increase quickly
during this motion. As already mentioned, the crouching and launching motions are
implemented in a single phase and by using the trajectory-tracking controller. The
final value of XG is 53.39cm which is identical to the final value of x.

0 5 10 15 20 25 30 35 40 45 50 55
40

45

50

55

60

65

70

75

80

flight phase

 X
G

 (cm)

 Y
G

 (
cm

)

Figure 4.7: Footprint of the CoM of the 2D hopper during a complete hop

Figure 4.8 shows the absolute velocities of the CoM in the horizontal (ẊG or Vx

in the plot) and the vertical (ẎG or Vy in the plot) directions and also the controller
torque(τ) during the hopping motion. As can be seen in the first graph in this figure,
ẊG is constant during the flight phase starting at about t = 1.5s. The value of ẊG is
also fixed for about 0.1s at t = 1.07s. This is because of the loss of contact during the
crouching motion which is described in the previous section. Very tiny discontinu-
ities in both ẊG and ẎG graphs at about t = 1.2s show the moment in which the foot
regains its contact with the ground during the crouching and launching phase.

According to the velocity graphs in Fig. 4.8, both ẊG and ẎG increase quickly
during the launching motion. Such a fast movement necessitates that the actuator
applies a considerable amount of torque to the knee joint. As can be seen in the
controller torque graph, τ rises very rapidly to about 160N.m during the launching
motion. Once the flight phase starts, the controller shifts to the flight phase controller
and aims to follow the reference sigmoid function and place the foot on the desired
location. According to Fig. 4.8, the controller hits the saturation limit, which has been
set to 160N.m, in both positive and negative directions during the flight phase. As is
expected, the value of ẎG decreases linearly during the flight phase. Sharp breaks in
all three graphs in Fig. 4.8 are related to the instant of the landing. At this moment

§4.3 Discussion on Simulation Results 69

0 0.5 1 1.5 2 2.5 3

0

0.5

1

 V
x (

m
/s

)

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

 V
y (

m
/s

)

0 0.5 1 1.5 2 2.5 3

−150

−100

−50

0

50

100

150

 Time (s)

 τ
 (

N
.m

)

Figure 4.8: Velocity of the CoM and control torque during a complete hop

70 Hopping Motion of an Under-actuated Planar Robot

the controller hits the torque limit for a few milliseconds and then quickly drops to
about 30N.m.

4.4 Summary

In this chapter, a single-hop motion is studied for a knee-leg hopping robot with
only one actuated revolute joint. The balancing control algorithm from chapter 3 is
extended to perform trajectory-tracking maneuvers, which enables the robot to per-
form the crouching, lift-off and flight phases of a single hop, as well as re-balancing
after landing. Simulation results demonstrate that the control system works well,
and that it is not significantly affected by small amounts of slipping between the foot
and the ground. The proposed angular momentum based controller is able to control
the robot’s motion during a single-hop in addition to all of its capabilities that were
discussed in the previous chapter. Although this chapter has not considered contin-
uous hopping motion (which would require the robot to move from landing directly
to the launching state), it has demonstrated the possibility of performing a complete
hop using only one actuator.

Chapter 5

Balancing Control Algorithm for a
3D Under-actuated Robot

This chapter studies the balancing control problem for a 3D under-actuated robot.
The robot, which is called “3D balancer” in this chapter, is essentially a spatial ver-
sion of the 2D balancer in chapter 3 where the passive and active revolute joints
are replaced with a passive spherical joint and an active two DoF joint, respectively.
This particular 3D under-actuated robot has not previously been studied in the liter-
ature. However, Miyashita et al. [2006] and Xinjilefu et al. [2009] introduced control
algorithms for similar spatial under-actuated robots.

Miyashita et al. [2006] proposed a 3D motion control algorithm for an under-
actuated manipulator which is called AcroBox. The AcroBox is in fact a two-link
3D robot with five DoF and two actuators which is similar to the 3D balancer in the
degrees of under-actuation. The difference between the two robots lies in the mecha-
nism of the active joint which is explained in section 5.1. The proposed controller for
the AcroBox, which is based on the idea of an output zeroing controller for a similar
system in 2D, is able to balance the robot in its upright position. The controller is
essentially an extended version of the planar balancing controller in [Yamakita et al.,
2002; Yonemura and Yamakita, 2004].

Xinjilefu et al. [2009] studied the postural control problem for a four DoF 3D
under-actuated robot. The robot consists of two links connected to each other by an
actuated universal joint and the lower link is attached to the ground by a passive
universal joint. Xinjilefu et al. [2009] used stochastic programming to find oscillatory
inputs that bring the system close to the unstable upright balanced configuration.

In this chapter, it is shown that the 3D balancer’s motion can be decomposed
into bending and swivelling motions. An angular momentum based controller is
introduced to control the angular momentum of the robot in bend and swivel direc-
tions. Simulation results show that the proposed controller is able to stabilize the
3D balancer robot in its upright balanced configuration starting from initial unstable
configurations, stabilize the robot at any unstable balanced configuration in any arbi-
trary vertical plane starting from an upright balanced position, and rotate the plane
of the robot about the vertical axis in order to change the orientation of the robot.
The two latter capabilities of the controller, which are due to the decoupled motion

71

72 Balancing Control Algorithm for a 3D Under-actuated Robot

of the robot, are demonstrated for the first time in this chapter.

5.1 Robot Model

A schematic diagram of the 3D balancer robot studied in this chapter is shown in
Fig. 5.1. The robot consists of two links connected to each other by a two DoF ac-
tuated joint (knee). The lower body is then connected to the ground via a spherical
passive joint. Therefore, the whole system has five DoF with only two actuators.���

������� �������
��� ��������	
���
������������������	
���
����

Figure 5.1: Schematic diagram of the 3D balancer robot

A double Cardan joint, which is a constant velocity joint, is used as the two DoF
active joint of the 3D balancer. The reason is that by using a constant velocity joint
at the knee, it is possible to “instantaneously” decouple the robot’s motion into two
parts which are called bending and swivelling motions in this chapter and will be
explained later in section 5.3. This claim is proved in the Appendix. The robot’s
motion is instantaneously decoupled, meaning that it is decoupled only on the force-
acceleration level (i.e. it may still be coupled by velocity terms). This property was
discovered by Dr. Roy Featherstone. In fact, the 3D balancer is deliberately designed
to provide this property by using a constant velocity joint in the knee.

5.1.1 Kinematics of the Spherical Passive Joint

Let q1, q2 and q3 denote the generalized coordinates of the spherical passive joint.
Fig. 5.2 shows the fixed coordinate frame xyz (fixed to the ground) and three other
relative coordinate frames that are used to express the orientation of the lower body
with respect to the ground. As shown in this figure, the angles q1, q2 and q3 are the
rotation angles of coordinate frames x1y1z1, x2y2z2 and x3y3z3 with respect to their
predecessor ones about z, y1 and x2, respectively (see Table 5.1).

Rotational coordinate transform matrices from x1y1z1 to xyz, x2y2z2 to x1y1z1 and
x3y3z3 to x2y2z2 are denoted by R1, 1R2 and 2R3, respectively. These matrices are as
follows:

R1 =

cos(q1) − sin(q1) 0
sin(q1) cos(q1) 0

0 0 1

 , (5.1)

§5.1 Robot Model 73

y3

z3

lower body

q3

q3

x2,x3

z2

q2

q2

x1

y1,y2
q1 q1

x y

z,z1

1

Figure 5.2: Coordinate frames of the passive joint

Table 5.1: Relationships between coordinate frames at the passive joint
frames predecessor frame axis of rotation angle of rotation
x1y1z1 xyz z q1
x2y2z2 x1y1z1 y1 q2

x3y3z3 x2y2z2 x2 q3

1R2 =

 cos(q2) 0 sin(q2)
0 1 0

− sin(q2) 0 cos(q2)

 , (5.2)

2R3 =

1 0 0
0 cos(q3) − sin(q3)
0 sin(q3) cos(q3)

 . (5.3)

Thus, the coordinate transformation matrix from x3y3z3 to xyz is R3 = R1
1R2

2R3.
The coordinates of the CoM of the lower body, expressed in the third coordinate
frame, are (0, 0, lc1) implying that the first link is attached to the third frame along
the positive direction of its z axis (z3). The coordinates of the lower body’s CoM,
expressed in the fixed frame, are then

C1 = R3

 0
0
lc1

 = lc1

 sin(q1) sin(q3) + cos(q1) sin(q2) cos(q3)
− cos(q1) sin(q3) + sin(q1) sin(q2) cos(q3)

cos(q2) cos(q3)

 . (5.4)

Therefore, independent of the value of q1, the lower body is upright if and only if
q2 = q3 = 0.

74 Balancing Control Algorithm for a 3D Under-actuated Robot

5.1.2 Kinematics of the Knee Joint – A Double Cardan Joint

A double Cardan joint is a constant velocity joint in which the angular velocity of the
input shaft is always equal to the angular velocity of the output shaft. These angular
velocities are denoted by ωin and ωout in Fig. 5.3. This figure shows a schematic
diagram of a double Cardan joint which consists of two universal joints that are
head-to-head coupled together via a connecting link.

�

���

�

�

��

�

�����������	��
�

�������	��������

�

���

� �

��

�

Figure 5.3: Schematic diagram of a double Cardan joint

To use a double Cardan joint in the knee joint of the 3D balancer, the connecting
link between the two universal joints is shrunk to zero and then discarded. Therefore
the two revolute joints, which connect the link to the universal joints, become one. A
schematic diagram of the knee joint is shown in Fig. 5.4. The kinematics of this joint
can be fully expressed by three generalized coordinates which are denoted by q4, q5

and q6 in this figure. However, because of the constant velocity constraint, the joint
has only two actual DoF and consequently only two actuators are required to actuate
this joint.

�

�

�

�

�

�

�

�

�

��

��

���������	�

��������	�

Figure 5.4: Schematic diagram of the constant velocity joint at the knee

As shown in Fig. 5.4, the rotation axis of q5 is always perpendicular to those of q4

and q6. Here, q5 is the angle between the rotation axes of q4 and q6, and consequently
these axes are collinear if q5 = 0. It is clear that, when q4 = q5 = q6 = 0, both the
upper and lower bodies are oriented in the same direction. The constant velocity
constraint in the knee joint can be expressed as

q̇4 = q̇6 =⇒ q4 = q6 . (5.5)

§5.1 Robot Model 75

This constraint is in fact an explicit velocity constraint which is implemented in sim-
ulations using the method described in §3.2 of [Featherstone, 2008]. More details
about employing this method in simulations are discussed in section 5.4.

Fig. 5.5 shows the coordinate frames that are used to express the relative rotations
of the upper body with respect to the lower body (q4, q5 and q6). The coordinate
frame x0y0z0 is fixed to the lower body with its origin at the knee joint and its z0 axis
along the extension of the lower body. This frame is identical to the x3y3z3 frame (in
Fig. 5.2) which is translated from the passive joint to the active one along the z3 axis.
Table 5.2 states the relationships between the coordinate frames x4y4z4, x5y5z5 and
x6y6z6 and their predecessor ones.

Table 5.2: Relationships between coordinate frames at the knee joint
frames predecessor frame axis of rotation angle of rotation
x4y4z4 x0y0z0 x0 q4
x5y5z5 x4y4z4 y4 q5

x6y6z6 x5y5z5 x5 q6 (= q4)

y6

z6

q6

q6

x5,x6

z5

q5

q5

y4,y5

z4

q4

q4

x0,x4
y0

z0

(a)

x0
y0

z0,z3

lower body

(b)

x3
y3

l1

z6

upper body

1

Figure 5.5: Coordinate frames of the knee joint

The rotational coordinate transformation matrices from x4y4z4 to x0y0z0, x5y5z5

to x4y4z4 and x6y6z6 to x5y5z5 are denoted by 0R4, 4R5 and 5R6, respectively, and are
as follows:

0R4 =

1 0 0
0 cos(q4) − sin(q4)
0 sin(q4) cos(q4)

 , (5.6)

76 Balancing Control Algorithm for a 3D Under-actuated Robot

4R5 =

 cos(q5) 0 sin(q5)
0 1 0

− sin(q5) 0 cos(q5)

 , (5.7)

5R6 =

1 0 0
0 cos(q6) − sin(q6)
0 sin(q6) cos(q6)

 . (5.8)

Therefore, knowing that q4 = q6, the coordinate transformation matrix from
x6y6z6 to x0y0z0 is

0R6 = 0R4
4R5

5R6 = cos(q5) sin(q4) sin(q5) cos(q4) sin(q5)
sin(q4) sin(q5) cos2(q4)− sin2(q4) cos(q5) − sin(q4) cos(q4)(1 + cos(q5))
− cos(q4) sin(q5) sin(q4) cos(q4)(1 + cos(q5)) − sin2(q4) + cos2(q4) cos(q5)

 .

(5.9)
Let l̂ and û represent unit vectors in the directions of the lower and upper bodies,
respectively, both expressed in the coordinate frame x0y0z0. According to Fig. 5.5,

l̂ =

0
0
1

 , (5.10)

which points in the positive direction of the vertical axis. Also it is shown in this
figure that the upper body is oriented along the positive direction of z6 and therefore

û = 0R6

0
0
1

 =

 cos(q4) sin(q5)
− sin(q4) cos(q4)(1 + cos(q5))
− sin2(q4) + cos2(q4) cos(q5)

 . (5.11)

Since the corresponding axes of x3y3z3 and x0y0z0 have the same orientation, the
rotational transformation matrix between these two frames is an identity matrix:
0R3 = 3R0 = I3×3. This means that û is also the unit vector of the upper body’s
orientation expressed in the coordinate frame x3y3z3.

As shown in Fig. 5.1, it is assumed that the CoM of the upper body is along the
body and at a distance of lc2 from the knee joint. Thus, the coordinates of the CoM
of the upper body expressed in the fixed frame are

C2 = R3

0
0
l1

+ R3
0R6

 0
0
lc2

 = R3(l1 l̂ + lc2û) . (5.12)

5.2 Definitions

This section provides some definitions regarding the kinematics of the robot. These
definitions are as follows:

§5.3 Bending and Swivelling Motions 77

• robot plane (bend plane): a plane which includes both links of the robot. The
robot’s CoM and the knee joint are always in this plane. This plane is not
defined if both links are in a line (i.e. the bend angle is either zero or π).

• bend axis: an axis perpendicular to the robot plane passing through the knee
joint (see Fig. 5.6).

• bend angle: the angle between the upper body and the extension of the lower
body of the robot in the robot plane. The bend angle is denoted by ψ in
Fig. 5.6(a). This angle is between 0 and π (i.e. 0 ≤ ψ ≤ π).

• bisector plane: a plane with a normal vector along the bisector of the bend angle.
This plane passes through the knee joint and is perpendicular to the robot
plane.

• swivel axis: an axis perpendicular to the bisector of the bend angle and lying in
the robot plane. This axis is the intersection line between the robot plane and
the bisector plane (see Fig. 5.6).

• swivel angle: the angle between the projection of the upper body axis onto the
x0y0 plane and the x0 axis. The swivel angle is denoted by σ in Fig. 5.6. As
mentioned in the previous section, the frame x0y0z0 is fixed to the lower body.

• vertical robot plane: a vertical plane whose intersection with the horizontal plane
(the ground) is the intersection line between the robot plane and the ground.
This plane is illustrated in Fig. 5.7(a).

• tilt angle: the angle between the robot plane and the vertical robot plane. The
tilt angle is represented by γ in Fig. 5.7(a) and is restricted between −π/2 and
π/2. This angle is in fact the angle between the unit vector of the bend axis and
its projection onto the horizontal plane (i.e. the xy plane of the fixed frame).
The tilt angle is positive if the bend axis points upward.

• robot plane angle: the angle between the vertical robot plane and the x axis of
the fixed frame. This angle is denoted by θ in Fig. 5.7(a).

• angle of the lower body: the angle between the lower body and the ground mea-
sured in the robot plane. This angle is represented by φ in Fig. 5.7(b).

• balance error: the horizontal distance between the CoM of the robot and its fixed
joint in the robot plane. The balance error is denoted by Xerr in Fig. 5.7(b).

5.3 Bending and Swivelling Motions

As already mentioned, it is possible to instantaneously decouple the robot’s motion
into bending and swivelling motions. These motions are defined as follows:

78 Balancing Control Algorithm for a 3D Under-actuated Robot

bisector plane

robot plane

bend angle bisector
(normal to bisector plane)

swivel axis

x0

y0

z0

(a)

σ

lower body

upper body

ψ

ψ
2

ψ
2

x0

(b)

y0

σ

robot plane

bend axis

swivel axis

1

Figure 5.6: (a) robot and bisector planes, bend and swivel angles and swivel axis, (b)
bend and swivel axes and swivel angle

the ground

robot plane

vertical robot plane

xrp

θ

γ

x y

z

(a)

robot plane

xrp

Xerr

(b)

φ

ψ

CoM

1

Figure 5.7: (a) vertical robot plane, robot plane, tilt angle and robot plane angle, (b)
angle of the lower body, bend angle and balance error

§5.3 Bending and Swivelling Motions 79

Bending Motion — refers to a movement of the robot which occurs in the robot
plane and affects the bend angle directly. Due to this motion, the upper link rotates
relative to the lower link about the bend axis. This motion is similar to the planar
motion of the 2D balancer robot. If there is no gravity (to change the orientation
of the robot plane by making the robot fall over), applying torque to the knee joint
and around the bend axis moves both links only in the robot plane and changes the
bend angle without changing the orientation of the robot plane. Since the whole
movement takes place in a plane, the direction of the bend axis remains fixed.

Swivelling Motion — is a motion where the upper body rotates relative to the
lower body about the swivel axis. As this is an out-of-plane motion, it causes the
direction of the swivel axis to spin relative to the lower body (and also the upper
body). However, an observer in a fixed position relative to the robot plane sees the
two bodies both rotating about their axes (at the same speed, of course) as shown in
Fig. 5.8. In the absence of gravity, and with the robot at rest, a torque at the knee joint
about the swivel axis causes a nonzero acceleration in the swivel direction (σ̈ 6= 0)
but zero acceleration in the bend direction (ψ̈ = 0). The effect of swivelling is to
rotate the robot plane, which alters the tilt angle (γ) between the robot plane and the
vertical robot plane.

lower body

upper body

swivel axis

1

Figure 5.8: Swivelling motion of the robot

5.3.1 Kinematics of Bend and Swivel

In this subsection, the relationships between bend and swivel angles (ψ and σ) and
joint coordinates in the dynamic model (q4, q5 and q6) will be explored. According
to the definitions, the bend angle is the angle between the upper body (û) and the
extension of the lower body (l̂) which can be calculated as

cos(ψ) = l̂ · û = − sin2(q4) + cos2(q4) cos(q5) . (5.13)

80 Balancing Control Algorithm for a 3D Under-actuated Robot

Also the bend axis is an axis which is perpendicular to both links of the robot. The
unit vector along the bend axis (B̂) in the x0y0z0 frame can be worked out as

B̂ =
l̂ × û
|l̂ × û|

=
l̂ × û

sin(ψ)
=

1
sin(ψ)

sin(q4) cos(q4)(1 + cos(q5))
cos(q4) sin(q5)

0

 . (5.14)

Clearly, this vector is in the x0y0 plane of the x0y0z0 coordinate frame (see Fig. 5.6(b)).
Note that, according to the definitions, the bend axis and therefore B̂ are not defined
when sin(ψ) = 0. Since |B̂| = 1 then

sin(ψ) =
√

sin2(q4) cos2(q4)(1 + cos(q5))2 + cos2(q4) sin2(q5) . (5.15)

As stated in the definitions, the swivel axis is an axis in the robot plane and is
perpendicular to the bisector of the bend angle (see Fig. 5.6(a)). The unit vector along
the swivel axis (Ŝ) in the x0y0z0 frame is

Ŝ =
l̂ − û
|l̂ − û|

=
1

|l̂ − û|

 − cos(q4) sin(q5)
sin(q4) cos(q4)(1 + cos(q5))

1 + sin2(q4)− cos2(q4) cos(q5)

 . (5.16)

As shown in Fig. 5.6(b), the swivel angle (σ) is the angle between the projection of
the upper body axis onto the x0y0 plane and the x0 axis. Therefore, using û in (5.11),
it follows that

cos(σ) =
cos(q4) sin(q5)√

cos2(q4) sin2(q5) + sin2(q4) cos2(q4)(1 + cos(q5))2
, (5.17)

and

sin(σ) =
− sin(q4) cos(q4)(1 + cos(q5))√

cos2(q4) sin2(q5) + sin2(q4) cos2(q4)(1 + cos(q5))2
. (5.18)

Substituting (5.15) into (5.17) and (5.18), yields

cos(σ) sin(ψ) = cos(q4) sin(q5) , (5.19)

and
sin(σ) sin(ψ) = − sin(q4) cos(q4)(1 + cos(q5)) . (5.20)

5.4 Motion Equations

This section describes the method that is used to calculate forward dynamics of the
robot and enforce the constant velocity constraint. Let q denote the matrix of the
coordinates of the robot and let F denote the matrix of the torques applied to the

§5.4 Motion Equations 81

robot by the controller (control torques) as

q =

q1

q2

q3

q4

q5

q6

, and F =

0
0
0
τ4

τ5

τ6

,

where τ4, τ5 and τ6 are the control torques which are exerted by the controller about
the rotation axes of q4, q5 and q6, respectively (see Fig. 5.4).

According to classical dynamics, the motion equation of the 3D balancer can be
written as

M(q)q̈ + N(q, q̇) = F , (5.21)

where M(q) is the robot’s inertia matrix and N(q, q̇) is called the bias force matrix
which accounts for the Coriolis and centrifugal forces, gravity and any other forces
acting on the system other than the control torques.

As already mentioned, there is a constant velocity constraint on the knee joint of
the robot (5.5) which can be explicitly expressed as

q̇ = Gẏ , (5.22)

where y is a matrix containing the generalized coordinates of the robot

y =

q1

q2

q3

q4

q5

 ,

and G is

G =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0

.

By differentiating the explicit constraint equation (5.22), q̈ will be

q̈ = Gÿ + Ġẏ Ġ=0−−→ q̈ = Gÿ , (5.23)

According to the equations of motion for a system with explicit motion constraints,
which is described in §3.2 of [Featherstone, 2008], the motion equations for the 3D

82 Balancing Control Algorithm for a 3D Under-actuated Robot

balancer are
(GT MG)ÿ = GT(F− N) , (5.24)

where GT is the transpose matrix of G. Therefore, the matrix of generalized forces is

Q = GT F =

0
0
0

τ4 + τ6

τ5

 . (5.25)

Thus, as an effect of the constant velocity constraint in (5.5), there are only two
independent control torques that influence the system which are (τ4 + τ6) and τ5.

5.5 Control Algorithm

The 3D balancer is designed to be instantaneously decoupled in the bend and swivel
directions. Decoupling the robot’s motion, it is now possible to decompose the con-
troller into a bending motion controller and a swivelling motion controller. Each
of these controllers is responsible for controlling its corresponding motion during a
balancing motion. The decomposed controller is called “bend-swivel” controller in
this chapter. The objective of the swivel controller, during a balancing motion, is to
bring the robot plane to a vertical configuration and the objective of the bend con-
troller is to stabilize the robot in the robot plane. The bend-swivel controller is able
to stabilize the robot in its upright unstable balanced configuration starting from an
initial unstable configuration.

The bending motion of the 3D balancer is planar and its dynamics resemble the
dynamics of the 2D balancer in chapter 3. Therefore, it is possible to use the balancing
controller in chapter 3 as the bend controller to control the robot’s motion in the robot
plane.

Let L represent the angular momentum of the 3D balancer about the passive joint,
expressed in the fixed frame, as

L =

Lx

Ly

Lz

 . (5.26)

Then

L̇ =

L̇x

L̇y

L̇z

 , and L̈ =

L̈x

L̈y

L̈z

 . (5.27)

It is known that the rate of change of the angular momentum of the 3D balancer
about its fixed point (L̇) is equal to the moment of the external forces about that

§5.5 Control Algorithm 83

point. So L̇ equals the moment of the gravity force about the fixed point,

L̇ = cg

−Y
X
0

 =⇒ L̈ = cg

−Ẏ
Ẋ
0

 . (5.28)

Here, c is the total mass of the robot, g is the gravitational constant and X and Y (and
Z) are the coordinates of the CoM of the robot in the fixed frame.

Since L̇ and L̈ are always zero in the z direction, it is impossible for any controller
to change the values of L̇z and L̈z and therefore the robot is uncontrollable about the
z axis. This means that, during a balancing motion, if the robot starts with a non-zero
initial value of Lz, it will keep rotating about the z axis even after the robot reaches
its balanced configuration and only the air resistance or friction in the joints are able
to stop its rotating motion.

The angular momentum of the robot and its derivatives in the bend direction are

Lb = LT B̃ , L̇b = L̇T B̃ , and L̈b = L̈T B̃ , (5.29)

and in the swivel direction are

Ls = LT S̃ , L̇s = L̇T S̃ , and L̈s = L̈T S̃ , (5.30)

where B̃ and S̃ are the unit vectors along the bend and swivel axes in the fixed frame,
respectively.

B̃ =

Bx

By

Bz

 = R3B̂ , (5.31)

and

S̃ =

Sx

Sy

Sz

 = R3Ŝ . (5.32)

Thus, according to (3.11), the desired control torque in the bend direction, which is
denoted by τb, is

τb = kdd L̈b + kd L̇b + kpLb + ks(ψd − ψ) + c5g cos(φ + ψ) , (5.33)

where ψd is the desired value of the bend angle. Comparing (5.33) and (3.11), it is
clear that φ and ψ are equivalent to q1 and q2 of the 2D balancer in chapter 3. The
gains of the bend controller (kdd, kd, kp and ks) can be calculated using the method
described in section 3.4.

The angular momentum of the robot is also used to control the robot’s motion in
the swivel direction. The swivel controller in this chapter is the control law in (3.7),

τs = k1 L̈s + k2 L̇s + k3Ls , (5.34)

84 Balancing Control Algorithm for a 3D Under-actuated Robot

where k1, k2 and k3 are the swivel controller’s gains. Since the swivel axis is perpen-
dicular to the bend axis, using this control law will lead to controlling the angular
momentum of the robot (and its derivatives) about the fixed joint around two per-
pendicular axes (in two perpendicular planes).

As already mentioned, the swivelling controller brings the robot plane to a verti-
cal during the balancing motion of the robot. However, if the robot’s plane is already
vertical, then the swivelling motion can rotate the robot plane about the vertical axis
and change its direction. This motion is called rotating motion in this chapter. To
perform such a movement, a small modification is made in the control law in (5.34)
by adding a proportional correcting term (i.e. k4(θd − θ)). The swivel control law is
then

τs = k1 L̈s + k2 L̇s + k3Ls + k4(θd − θ) , (5.35)

where k4 is a gain of the controller and θd is the desired value of the robot plane
angle. The gains of the swivel controller (k1, k2, k3 and k4) are tuned manually to get
good results in simulations. The best way to obtain these gains is to calculate them
mathematically by using the dynamics equations of the 3D balancer in the swivel
direction.

Since τb and τS are control torques in the bend and swivel directions, respectively,
the total control torque is

τ = τbB̃ + τsS̃ . (5.36)

Therefore, the control torque in the direction of each joint is

τ4 = τT J4

τ5 = τT J5

τ6 = τT J6

, (5.37)

where J4, J5 and J6 are the unit vectors along the axes of rotation of q4, q5 and q6,
respectively. These vectors, in the fixed coordinate frame, are

J4 = R3

1
0
0

 , J5 = R3
0R4

0
1
0

 , J6 = R3
0R4

4R5

1
0
0

 . (5.38)

As mentioned in section 5.4, the torques that the controller applies to the knee
joint are (τ4 + τ6) and τ5 which are calculated as

τ46 = τ4 + τ6 = τT (J4 + J6) and τ5 = τT J5 . (5.39)

5.6 Simulation Results

In this section, simulation results of straightening, crouching and rotating motions of
a 3D balancer are presented. All simulations have been performed in Simulink. The

§5.6 Simulation Results 85

parameters of the 3D balancer which are used in the simulations are

m1 = 0.49kg , m2 = 0.11kg ,
l1 = 0.4m , l2 = 0.6m ,
lc1 = 0.1714m , lc2 = 0.4364m ,
I1x = I1y = 0.0036kg.m2 , I2x = I2y = 0.0043kg.m2 ,
I1z = 0 , I2z = 0.002kg.m2 .

(5.40)

These parameters are in fact the same as the parameters of the simulator’s model for
the 2D balancer in Table 3.14. The only difference is that the upper body of the 3D
balancer has a non-zero moment of inertia about its z axis (z6). This inertia helps the
robot to balance with less swivelling motion.

Figures 5.9 to 5.20 show the simulation results of the 3D balancer moving from
three different initial unbalanced configurations to the upright balanced one (i.e.
φ = π

2 and ψ = 0 that is equivalent to q2 = q3 = q4 = q5 = 0). The initial conditions
of these three motions are mentioned in Table 5.3. Note that during the straightening
motion, since the bend and swivel planes are not defined in the robot’s upright
position, the robot ends up in a configuration which is not exactly the upright one
but is very close to the upright position.

Table 5.3: Initial conditions of the robot for the straightening motions (q1 = 0 and
q6 = q4)

examples ψ γ Xerr q2 (rad) q3 (rad) q4 (rad) q5 (rad)
first 90◦ 15◦ 0 -0.4034 -0.1829 0.7158 0.7131

second 90◦ 5◦ 5 cm -0.3485 -0.4810 0.7183 0.7015
third 120◦ 45◦ 0 -0.8490 0.1124 0.9998 0.7789

Three parameters are used to characterize the initial conditions of the robot which
are the bend angle (ψ), the tilt angle (γ) and the balance error (Xerr). According to
the definitions, the tilt angle can be calculated using the z-component of the bend
axis as

sin(γ) = Bz =⇒ γ = sin−1(Bz) . (5.41)

As shown in Fig. 5.7(b), the kinematics of the 3D balancer in the robot plane are
completely the same as the ones of the 2D balancer. Hence, the balance error can be
calculated by using (3.3) as

Xerr =
1
c
(c4 cos(φ) + c5 cos(φ + ψ)) , (5.42)

where c4 = m1lc1 +m2l1 and c5 = m2lc2. Obviously the robot plane is vertical if γ = 0
and the robot is in its balanced configuration if γ = Xerr = 0.

Figures 5.9, 5.13 and 5.17 show the joint angles of the robot during the straight-
ening motions. To magnify the changes in the joint angles, they are plotted on a time
scale of zero to one second whereas the other graphs (ψ,γ and Xerr) cover the first two
seconds of the motion. As can be seen in these graphs, the value of q1, which is the

86 Balancing Control Algorithm for a 3D Under-actuated Robot

rotation angle of the lower body about z axis (vertical) of the fixed frame, converges
to a value other than zero. This means that, during a balancing motion, the robot
rotates about the vertical axis by an unknown amount which in fact depends on the
initial position of the robot. q1 is not plotted in Fig. 5.17 because it converges to a
very large value (i.e. −16.52rad) at the end of the motion. Rapid changes in the joint
angles (q2, q3, q4 and q5) within about 0.3s of the beginning of the motions are due
to the swivelling motion of the robot. It can be seen that in all three cases the joint
angles (except q1) converge to zero in about the first second of the motion.

In the first example the robot starts from a configuration which is similar to the
initial configuration of the 2D balancer in Fig. 3.2 but with a 15◦ tilt angle of the
robot plane. In the second example, the tilt angle is decreased but a 5cm balance
error is added to the initial conditions. Comparing the results of these two motions
it can be seen that decreasing the tilt angle results in less and slower changes in the
joint angles and therefore less swivelling motion at the beginning. Also there is a
relatively large movement in the opposite direction of the desired bend angle in the
first motion, but the settling times of these two motions are almost the same.

In the third example the robot starts from an initial configuration in which γ =
45◦ and ψ = 120◦. It can be seen that the controller is able to balance the robot from
such an unbalanced position with relatively large tilt and bend angles. The high
energetic movements at the beginning of the motion are due to the fast swivelling
motion which is required to correct the tilt angle. Comparing Figs. 5.17 and 5.18
it is clear that, during the first 0.2 second of the motion, q4 and q5 oscillate rapidly
whereas ψ hardly changes which shows the fast swivelling motion of the robot. These
three examples demonstrate that the controller is able to stabilize the robot in its
upright balanced configuration from arbitrary stationary initial positions.

During a crouching motion, the objective of the controller is to stabilize the robot
in an unstable balanced configuration at an arbitrary vertical robot plane, when the
robot starts from an initial upright balanced configuration. Therefore, the command
signal includes the desired bend angle (ψd) and the desired orientation of the robot
plane (θd). Figs. 5.21 to 5.24 show the joint angles, the bend angle (ψ) and the
robot plane angle (θ) during two crouching motions. In both of these motions, the
robot starts from a configuration that is quite close to an upright balanced one (i.e.
q2 = q3 = q5 = 0 and q4 = 1e−4) and aims to balance at configurations which are
characterized by ψd = π

2 and θd = π
6 in the first example and ψd = π

2 and θd = π
3 in

the second one.
The observed discontinuity in the bend angle is due to it being defined as always

positive and less than π (i.e. 0 ≤ ψ ≤ π). Comparing Figs. 5.22 and 5.24, it is clear
that the curves of the bend angle in both examples are the same. Also it can be
seen that the behaviour of the bend angle is similar to the behaviour of q2 of the 2D
balancer during its crouching motion (Fig. 3.3).

Due to the initial conditions of the robot (q4 = q6 = 1e−4), the robot plane angle
starts from θ = π/2 in both examples and then converges to its desired value quite
rapidly. There are also sudden changes in θ when ψ is very close to zero (see Figs. 5.22
and 5.24) which is because the robot plane is not defined at ψ = 0. According to

§5.6 Simulation Results 87

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

7

 Time (s)

 A
ng

le
s

(r
ad

)

q
1

q
2

q
3

q
4

q
5

Figure 5.9: Joint angles in a straightening motion of the 3D balancer–1st example

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 Time (s)

 B
en

d
an

gl
e

−
 ψ

 (
ra

d)

Figure 5.10: Bend angle in a straightening motion of the 3D balancer–1st example

88 Balancing Control Algorithm for a 3D Under-actuated Robot

0 0.5 1 1.5 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 Time (s)

 T
ilt

 a
ng

le
 −

 γ
(r

ad
)

Figure 5.11: Tilt angle in a straightening motion of the 3D balancer–1st example

0 0.5 1 1.5 2

−2

−1

0

1

2

3

4

 Time (s)

 X
er

r (
cm

)

Figure 5.12: Balance error in a straightening motion of the 3D balancer–1st example

§5.6 Simulation Results 89

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

 Time (s)

 A
ng

le
s

(r
ad

)

q
1

q
2

q
3

q
4

q
5

Figure 5.13: Joint angles in a straightening motion of the 3D balancer–2nd example

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Time (s)

 B
en

d
an

gl
e

−
 ψ

 (
ra

d)

Figure 5.14: Bend angle in a straightening motion of the 3D balancer–2nd example

90 Balancing Control Algorithm for a 3D Under-actuated Robot

0 0.5 1 1.5 2
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 Time (s)

 T
ilt

 a
ng

le
 −

 γ
(r

ad
)

Figure 5.15: Tilt angle in a straightening motion of the 3D balancer–2nd example

0 0.5 1 1.5 2

0

1

2

3

4

5

 Time (s)

 X
er

r (
cm

)

Figure 5.16: Balance error in a straightening motion of the 3D balancer–2nd example

§5.6 Simulation Results 91

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 Time (s)

 A
ng

le
s

(r
ad

)

q
2

q
3

q
4

q
5

Figure 5.17: Joint angles in a straightening motion of the 3D balancer–3rd example

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 Time (s)

 B
en

d
an

gl
e

−
 ψ

 (
ra

d)

Figure 5.18: Bend angle in a straightening motion of the 3D balancer–3rd example

92 Balancing Control Algorithm for a 3D Under-actuated Robot

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time (s)

 T
ilt

 a
ng

le
 −

 γ
(r

ad
)

Figure 5.19: Tilt angle in a straightening motion of the 3D balancer–3rd example

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 Time (s)

 X
er

r (
cm

)

Figure 5.20: Balance error in a straightening motion of the 3D balancer–3rd example

§5.6 Simulation Results 93

0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

 Time (s)

 A
ng

le
s

(r
ad

)

q
1

q
2

q
3

q
4

q
5

Figure 5.21: Joint angles in a crouching motion of the 3D balancer–1st example

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Time (s)

 ψ
 a

nd
 θ

 (
ra

d)

command
bend angle (ψ)
robot plane angle (θ)

Figure 5.22: Bend and robot plane angles in a crouching motion of the 3D balancer–
1st example

94 Balancing Control Algorithm for a 3D Under-actuated Robot

0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 Time (s)

 A
ng

le
s

(r
ad

)

q

1

q
2

q
3

q
4

q
5

Figure 5.23: Joint angles in a crouching motion of the 3D balancer–2nd example

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Time (s)

 ψ
 a

nd
 θ

 (
ra

d)

command
bend angle (ψ)
robot plane angle (θ)

Figure 5.24: Bend and robot plane angles in a crouching motion of the 3D balancer–

2nd example

§5.6 Simulation Results 95

Figs. 5.22 and 5.24, θ follows the command signal (θd) exactly and does not change
during the crouching motion (except when ψ is very close to zero) which illustrates
that the bending motion is completely decoupled from the swivelling motion. The
controller can change the bend angle without affecting the orientation of the robot
plane. Also Figs. 5.21 and 5.23 show that different values of the joint angles are
required to crouch the robot in different planes with the same bend angles.

During a rotating motion, the controller aims to change the direction of the robot
plane from an arbitrary vertical plane to any other vertical one, when the robot
starts from an initial crouched balanced configuration. Figs. 5.25 and 5.26 show
the bend and the robot plane angles while the 3D balancer is following a command
signal including crouching, rotating and straightening motions. The command signal
consists of two steps for the bend angle (including one at t = 0 and one at t = 22)
and one step (at t = 5) and three ramps (with different slopes: 1rad/s, 0.5rad/s and
0.2rad/s) for the robot plane angle. The rate of change of θ is called rotating velocity
of the robot in this chapter and is denoted by θ̇.

0 5 10 15 20

0

0.5

1

1.5

2

 Time (s)

 B
en

d
an

gl
e

−
 ψ

 (
ra

d)

command
output

Figure 5.25: Bend angle in crouching, rotating and straightening motions of the 3D
balancer

As can be seen in Figs. 5.25 and 5.26, although the trajectory following perfor-
mance is reasonably good, there is always a time delay in following the command
trajectories of θ. There are also some disturbances in the bend angle during the rotat-
ing motions of the robot. These disturbances are quite significant when the rotating
velocity is high (i.e. the step command or ramps with θ̇ = 1rad/s and even for
θ̇ = 0.5rad/s). The increase in the bend angle during the rotating motion suggests
that a strong coupling exists between the bending and swivelling motions for high
values of θ̇. However, at low rotating velocities (e.g. θ̇ = 0.2rad/s), the bend angle
remains almost unaffected (0.009rad steady-state error) implying that the coupling is
very small.

Maximum errors of the bend angle due to the rotating motions are 0.011rad,

96 Balancing Control Algorithm for a 3D Under-actuated Robot

0 5 10 15 20

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Time (s)

 R
ob

ot
 p

la
ne

 a
ng

le
 −

 θ
 (

ra
d)

command
output

Figure 5.26: Robot plane angle in crouching, rotating and straightening motions of
the 3D balancer

0.065rad and 0.258rad at θ̇ = 0.2rad/s, θ̇ = 0.5rad/s and θ̇ = 1rad/s, respectively.
Comparing these errors, it can be seen that they vary with the square of the velocity
of the rotating motion (θ̇). Thus, it can be concluded that the disturbances in the bend
angle are functions of the square of the rotating velocity and therefore the square of
the swivelling velocity. This remark verifies that the bending and the swivelling
motions are instantaneously decoupled. Since the bending motion (crouching) does
not affect the swivel angle it can be concluded that it is completely decoupled from
the swivelling motion. However, according to the simulation results, the swivelling
motion is coupled to the bending motion via velocity terms.

5.7 Summary

In this chapter a dynamic model of a 3D under-actuated robot with three degrees of
under-actuation is introduced and a new control algorithm is presented to balance
the robot. The active joint of the robot is specially designed to decouple the robot’s
motion instantaneously into bending and swivelling motions. Then an angular mo-
mentum based controller is proposed to balance the robot in the bend and swivel
directions. The controller is able to stabilize the robot in any unstable balanced con-
figuration at any arbitrary vertical plane, and also rotate the robot plane about the
vertical axis without losing balance. Simulation results show the good performance
of the controller in straightening, crouching and rotating motions. The last two mo-
tions, which are the results of decoupling the robot’s motion, are demonstrated here
for the first time. According to the simulations, the robot is able to recover its balance
from an arbitrary initial unbalanced configuration and crouch at any arbitrary ver-
tical plane. It will be able to crouch, launch and hop in any arbitrary vertical plane
using the algorithm introduced in chapter 4.

§5.7 Summary 97

Appendix

This appendix proves that the bending and the swivelling motions are instanta-
neously decoupled.1 Let MBS denote the generalized inertia matrix of the robot
in bend-swivel space and τBS denote its corresponding generalized force vector as

τBS =

τ1

τ2

τ3

τb
τs

 =

0
0
0
τb
τs

 , (5.43)

where τb and τs are pure couples about bend and swivel axes, respectively, and τ1, τ2

and τ3 are zero because they belong to the passive joint of the robot. Therefore, if the
robot is at rest (i.e. no velocity terms) and there is no gravity, the motion equations
of the robot in bend-swivel space become

MBSq̈BS = τBS =⇒ q̈BS = M−1
BS τBS , (5.44)

where qBS is the matrix of the generalized coordinates of the robot in bend-swivel
space as

qBS =

q1

q2

q3

ψ

σ

 . (5.45)

The bending and swivelling motions are decoupled at the force-acceleration level
if and only if τb and τs do not cause any acceleration in the swivel and bend direc-
tions, respectively. Since MBS is a symmetric matrix, using (5.44) and knowing that
τ1 = τ2 = τ3 = 0, it is clear that the bending and swivelling motions are instanta-
neously decoupled if and only if M−1

BS (4, 5) = M−1
BS (5, 4) = 0 where M−1

BS (i, j) is the
element in the ith row and jth column of the matrix. Note that, because of the sym-
metry in the inertia matrix, M−1

BS (4, 5) is always equal to M−1
BS (5, 4) implying that if

τb does not cause any acceleration in the swivel direction then τs does not cause any
acceleration in the bend direction either.

Fig. 5.27 shows the robot in the robot plane. The robot has a mirror symmetry
about this plane which implies that the centers of mass of each link and therefore the
CoM of the robot are always in this plane. Also one of the principal axes of inertia
of each link is perpendicular to the plane, and so the other principal axes are all in
the plane. The spherical joint is also symmetrical with respect to the plane. Since the
bend axis (B̃) is always perpendicular to the robot plane, τb is an in-plane couple and
therefore it causes acceleration in the bend direction only and nothing in the swivel
direction (i.e. σ̈ = 0). This concludes the proof.

1This proof is due to Dr. Roy Featherstone.

98 Balancing Control Algorithm for a 3D Under-actuated Robot

robot plane

ψ

φ

B̃

τb

1

Figure 5.27: Robot in the robot plane

Remark: The proof relies on the robot being physically capable of a pure bending
motion. The double Cardan joint guarantees that a pure bending motion (and also
a pure swivelling motion) is always possible for any value of q4 and q5; but simpler
joints, such as the universal joint, do not have this property. This is why it is necessary
for the balancer to have a double Cardan joint at the knee.

Chapter 6

Conclusion

6.1 Thesis Contributions

The following are the main contributions of the thesis:

• A new angular momentum based controller for the balancing motion of an
under-actuated planar robot. The controller is able to stabilize the robot at
any unstable balanced configuration in which the robot is controllable and to
control the robot to follow setpoint and motion trajectory commands. It is also
able to control the balancing motion of the robot with rolling contact even in
the presence of sudden changes in the curvature of the foot.

• A new non-linear normal force model for the contact between a sphere and
the ground. The new model is different from the previous ones only in the
damping term. This model is able to accurately calculate the coefficient of
restitution of the contact between spheres and plates of various materials. The
new normal contact model has been tested against real experimental data and
found to be more accurate than any of the other models it was compared with,
which includes the widely-used Hunt/Crossley model. This model can be used
in modelling the contact force between a legged robot’s foot and the ground.

• A new control strategy for a single-hop motion of a knee-leg hopping robot.
The robot is in fact a two-link robot with one actuator in the knee joint. During
a single-hop motion the robot starts from its upright balanced configuration
and after crouching, launching and flight phases the robot lands at a desired
location and rebalance itself at its upright configuration.

• A new angular momentum based controller for balancing motion of a spatial
under-actuated robot. The robot consists of two links connected to each other
by an active two DoF joint (knee). The lower link is connected to the ground
via a passive spherical joint. The robot has five DoF and is controlled by using
only two actuators in the knee joint. Using a constant velocity joint at the knee,
decouples the robot’s motion instantaneously into bending and swivelling mo-
tions (i.e. invented by Dr. Roy Featherstone) which are controlled separately
using the proposed control algorithm. The new controller is able to balance

99

100 Conclusion

the robot at any unstable balanced configuration at any arbitrary vertical plane.
It is also able to rotate the vertical plane of the robot about the vertical axis.
Using this controller it is possible to confine the robot’s motion to any arbitrary
vertical plane. Thus, the hopping motion of the 3D robot becomes a planar
problem.

6.2 Future Work

Some possible extensions and research directions are summarized below:

• Solving the sensitivity problem of the planar balance controller to the bias in the
sensors (or errors that influence the balanced configuration). This is a common
problem in all previous controllers in the literature.

• Extending the planar balance controller to control under-actuated robots with
multiple links. This can be used in controlling the balancing motion of multi-
legged robots or humanoids.

• Finding a control strategy for continuous hopping motion of the 2D hopper.
So the controller would be able to calculate proper (or optimal) hop length be-
tween the robot’s location and a desired one and perform continuous hopping
motions to move the robot to the desired location.

• Modelling the motion of the 3D balancer robot in swivel direction and finding
optimal gains for the swivel controller. Also a new controller for its swivelling
motion can be derived using the motion equations in swivel direction.

• Building the 2D hopper and the 3D balancer and implementing the proposed
controllers on real robots.

Bibliography

Abdallah, M. and Waldron, K., 2009. The mechanics of biped running and a stable
control strategy. Robotica, 27, 5 (2009), 789. (cited on page 4)

Abdallah, M. E. and Waldron, K. J., 2007. A physical model and control strategy
for biped running. In Robotics and Automation, 2007 IEEE International Conference
on, 3982–3988. IEEE. (cited on page 4)

Ahmadi, M. and Buehler, M., 1995. A control strategy for stable passive running.
In Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’,
Proceedings. 1995 IEEE/RSJ International Conference on, vol. 3, 152–157. IEEE. (cited
on page 4)

Ahmadi, M. and Buehler, M., 1997. Stable control of a simulated one-legged run-
ning robot with hip and leg compliance. Robotics and Automation, IEEE Transactions
on, 13, 1 (1997), 96–104. (cited on page 4)

Ahmadi, M. and Buehler, M., 2006. Controlled passive dynamic running experi-
ments with the arl-monopod ii. Robotics, IEEE Transactions on, 22, 5 (2006), 974–986.
(cited on page 4)

Altendorfer, R.; Koditschek, D.; and Holmes, P., 2004. Stability analysis of legged
locomotion models by symmetry-factored return maps. The International Journal of
Robotics Research, 23, 10-11 (2004), 979–999. (cited on page 4)

Amagata, Y.; Nakaura, S.; and Sampei, M., 2008. The running of humanoid robot
on uneven terrain utilizing output zeroing. In SICE Annual Conference, 2008, 2841–
2846. IEEE. (cited on page 5)

Ankarali, M. and Saranli, U., 2010. Analysis and control of a dissipative spring-
mass hopper with torque actuation. In Proceedings of Robotics: Science and Systems,
Zaragoza, Spain. (cited on page 4)

Armstrong-Hélouvry, B.; Dupont, P.; and De Wit, C., 1994. A survey of models,
analysis tools and compensation methods for the control of machines with friction.
Automatica, 30, 7 (1994), 1083–1138. (cited on page 18)

Azad, M. and Featherstone, R., 2010. Modeling the contact between a rolling
sphere and a compliant ground plane. In Australasian Conf. Robotics and Automation,
Brisbane, Australia. (cited on page 9)

101

102 BIBLIOGRAPHY

Azad, M. and Featherstone, R., 2012. Angular momentum based controller for
balancing an inverted double pendulum. In RoManSy 2012, Paris, France. (cited
on page 26)

Azad, M. and Featherstone, R., 2013. Balancing and hopping motion of a planar
hopper with one actuator. In Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, 2027–2032. IEEE. (cited on page 57)

Berkemeier, M. and Fearing, R., 1992. Control of a two-link robot to achieve slid-
ing and hopping gaits. In Robotics and Automation, 1992. Proceedings., 1992 IEEE
International Conference on, 286–291. IEEE. (cited on pages xiii and 6)

Berkemeier, M. and Fearing, R., 1998. Sliding and hopping gaits for the underac-
tuated acrobot. Robotics and Automation, IEEE Transactions on, 14, 4 (1998), 629–634.
(cited on pages 5, 6, 7, 57, and 59)

Berkemeier, M. and Fearing, R., 1999. Tracking fast inverted trajectories of the
underactuated acrobot. Robotics and Automation, IEEE Transactions on, 15, 4 (1999),
740–750. (cited on pages 5, 7, 33, 42, and 44)

Bliman, P. and Sorine, M., 1995. Easy-to-use realistic dry friction models for auto-
matic control. In Proceedings of 3rd European Control Conference, Rome, Italy, 3788–
3794. (cited on page 18)

Brown, S. C. and Passino, K. M., 1997. Intelligent control for an acrobot. Journal of
Intelligent and Robotic Systems, 18, 3 (1997), 209–248. (cited on pages 7 and 44)

Canudas de Wit, C.; Olsson, H.; Astrom, K.; and Lischinsky, P., 1995. A new
model for control of systems with friction. Automatic Control, IEEE Transactions on,
40, 3 (1995), 419–425. (cited on page 18)

Cherouvim, N. and Papadopoulos, E., 2009. Control of hopping speed and height
over unknown rough terrain using a single actuator. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, 2743–2748. IEEE. (cited on page 4)

Chevallereau, C. and Aoustin, Y., 2001. Optimal reference trajectories for walking
and running of a biped robot. Robotica, 19, 5 (2001), 557–569. (cited on page 5)

Chevallereau, C.; Westervelt, E.; and Grizzle, J., 2005. Asymptotically stable
running for a five-link, four-actuator, planar bipedal robot. The International Journal
of Robotics Research, 24, 6 (2005), 431–464. (cited on page 5)

Cho, B. and Oh, J., 2008. Running pattern generation of humanoid biped with
a fixed point and its realization. In Humanoid Robots, 2008. Humanoids 2008. 8th
IEEE-RAS International Conference on, 299–305. IEEE. (cited on page 6)

Cho, B. and Oh, J., 2009. Running pattern generation of humanoid biped in the
three-dimensional space and its realization. In Advanced Intelligent Mechatronics,
2009. AIM 2009. IEEE/ASME International Conference on, 142–149. IEEE. (cited on
page 6)

BIBLIOGRAPHY 103

Dahl, P., 1968. A solid friction model. Technical report, DTIC Document. (cited on
page 18)

Dupont, P.; Armstrong, B.; and Hayward, V., 2000. Elasto-plastic friction model:
contact compliance and stiction. In American Control Conference, 2000. Proceedings of
the 2000, Chicago, Illinois, vol. 2, 1072–1077. IEEE. (cited on page 18)

Dupont, P.; Hayward, V.; Armstrong, B.; and Altpeter, F., 2002. Single state
elastoplastic friction models. Automatic Control, IEEE Transactions on, 47, 5 (2002),
787–792. (cited on page 18)

Falcon, E.; Laroche, C.; Fauve, S.; and Coste, C., 1998. Behavior of one inelastic
ball bouncing repeatedly off the ground. The European Physical Journal B-Condensed
Matter and Complex Systems, 3, 1 (1998), 45–57. (cited on page 10)

Featherstone, R., 2008. Rigid body dynamics algorithms. Springer NewYork, USA:.
(cited on pages 18, 75, and 81)

Featherstone, R., 2012. Analysis and design of planar self-balancing double-
pendulum robots. In Romansy 19–Robot Design, Dynamics and Control, 259–266.
Springer. (cited on pages 30, 31, 34, and 48)

Fernandes, R.; Akinfiev, T.; and Armada, A., 2009. Control of the hop height of
a one-legged resonance robot. Automation and Remote Control, 70, 1 (2009), 64–73.
(cited on page 3)

François, C. and Samson, C., 1998. A new approach to the control of the planar
one-legged hopper. The International Journal of Robotics Research, 17, 11 (1998), 1150–
1166. (cited on page 4)

Fujimoto, Y., 2004. Trajectory generation of biped running robot with minimum
energy consumption. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, vol. 4, 3803–3808. IEEE. (cited on page 4)

Gilardi, G. and Sharf, I., 2002. Literature survey of contact dynamics modelling.
Mechanism and machine theory, 37, 10 (2002), 1213–1239. (cited on page 9)

Goldsmith, W., 1960. Impact: the theory and physical behaviour of colliding solids. E.
Arnold (London). (cited on pages 10 and 15)

Grizzle, J.; Hurst, J.; Morris, B.; Park, H.; and Sreenath, K., 2009. Mabel, a new
robotic bipedal walker and runner. In American Control Conference, 2009. ACC’09.,
2030–2036. IEEE. (cited on page 5)

Grizzle, J.; Moog, C.; and Chevallereau, C., 2005. Nonlinear control of mechanical
systems with an unactuated cyclic variable. Automatic Control, IEEE Transactions on,
50, 5 (2005), 559–576. (cited on pages 6, 7, 25, and 42)

104 BIBLIOGRAPHY

Ha, Y. and Yuta, S., 1994. Trajectory tracking control for navigation of self-contained
mobile inverse pendulum. In Intelligent Robots and Systems’ 94.’Advanced Robotic
Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International
Conference on, vol. 3, 1875–1882. IEEE. (cited on page 45)

Haessig Jr, D. and Friedland, B., 1991. On the modeling and simulation of friction.
Journal of Dynamic Systems, Measurement, and Control, 113 (1991), 354–362. (cited
on page 18)

Harbick, K. and Sukhatme, G., 2001a. Height control for a one-legged hopping
robot using a one-dimensional model. Technical report, Institute for Robotics and
Intelligent Systems. USC. (cited on page 3)

Harbick, K. and Sukhatme, G., 2001b. Height control for a one-legged hopping
robot using a two-dimensional model. Technical report, Institute for Robotics and
Intelligent Systems. USC. (cited on page 4)

Harnefors, L. and Nee, H.-P., 2000. A general algorithm for speed and position
estimation of ac motors. Industrial Electronics, IEEE Transactions on, 47, 1 (2000),
77–83. (cited on page 38)

Hattori, K.; Yamaura, H.; and Ono, K., 2004. Torque-based aerial posture control
of a two-link acrobat robot. Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering, 218, 7 (2004), 595–601. (cited on page
6)

Hauser, J. and Murray, R., 1990. Nonlinear controllers for non-integrable systems:
The acrobot example. In American Control Conference, SanDiego, CA, 669–671. IEEE.
(cited on pages 7 and 25)

He, G. and Geng, Z., 2009. Exponentially stabilizing an one-legged hopping robot
with non-slip model in flight phase. Mechatronics, 19, 3 (2009), 364–374. (cited on
page 4)

He, G.; Tan, X.; Zhang, X.; and Lu, Z., 2008. Modeling, motion planning, and control
of one-legged hopping robot actuated by two arms. Mechanism and Machine Theory,
43, 1 (2008), 33–49. (cited on page 4)

Hodgins, J. and Raibert, M., 1990. Biped gymnastics. The International Journal of
Robotics Research, 9, 2 (1990), 115–128. (cited on page 3)

Hollis, R., 2008. Ballbots. Special Editions, 18, 1 (2008), 58–63. (cited on page 45)

Hunt, K. and Crossley, F., 1975. Coefficient of restitution interpreted as damping
in vibroimpact. J. Appl. Mech., 42, 2 (1975), 440–445. (cited on page 10)

Hyon, S. and Emura, T., 2004a. Energy-preserving control of a passive one-legged
running robot. Advanced Robotics, 18, 4 (2004), 357–381. (cited on page 4)

BIBLIOGRAPHY 105

Hyon, S. and Emura, T., 2004b. Running control of a planar biped robot based on
energy-preserving strategy. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, vol. 4, 3791–3796. IEEE. (cited on page 4)

Iida, F.; Dravid, R.; and Paul, C., 2002. Design and control of a pendulum driven
hopping robot. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Con-
ference on, vol. 3, 2141–2146. IEEE. (cited on page 4)

Inoue, A.; Deng, M.; Hara, S.; and Henmi, T., 2007. Swing-up and stabilizing
control system design for an acrobot. In Networking, Sensing and Control, 2007 IEEE
International Conference on, 559–561. IEEE. (cited on pages 7 and 44)

Johnson, K., 1977. Contact mechanics. Cambridge university press. (cited on pages 9
and 13)

Jung, S. and Kim, S. S., 2008. Control experiment of a wheel-driven mobile inverted
pendulum using neural network. Control Systems Technology, IEEE Transactions on,
16, 2 (2008), 297–303. (cited on page 45)

Kajita, S.; Kaneko, K.; Morisawa, M.; Nakaoka, S.; and Hirukawa, H., 2007a.
Zmp-based biped running enhanced by toe springs. In Robotics and Automation,
2007 IEEE International Conference on, 3963–3969. IEEE. (cited on page 6)

Kajita, S.; Nagasaki, T.; Kaneko, K.; and Hirukawa, H., 2007b. Zmp-based biped
running control. Robotics & Automation Magazine, IEEE, 14, 2 (2007), 63–72. (cited
on page 6)

Kawabara, G. and Kono, K., 1987. Restitution coefficient in a collision between two
spheres. Jpn. J. Appl. Phys. 1, 26, 8 (1987), 1230–1233. (cited on pages 10 and 15)

Kawaguchi, M. and Yamakita, M., 2011. Stabilizing of bike robot with variable
configured balancer. In SICE Annual Conference (SICE), 2011 Proceedings of, 1057–
1062. IEEE. (cited on page 7)

Kawamura, A. and Zhu, C., 2006. The development of biped robot mari-3 for fast
walking and running. In Humanoid Robots, 2006 6th IEEE-RAS International Confer-
ence on, 599–604. IEEE. (cited on page 6)

Lai, X.; Wu, Y.; She, J.; and Wu, M., 2005. Control design and comprehensive
stability analysis of acrobots based on lyapunov functions. Journal of Central South
University of Technology, 12, 1 (2005), 210–216. (cited on pages 7 and 44)

Lankarani, P. and Nikravesh, H., 1990. A contact force model with hysteresis
damping for impact analysis of multi-body systems. J. Mechanical Design, 112, 3
(1990), 369–376. (cited on page 10)

Lauwers, T.; Kantor, G. A.; and Hollis, R. L., 2006. A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive. In Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2884–2889. IEEE.
(cited on page 45)

106 BIBLIOGRAPHY

Li, Z. and He, J., 1990. An energy perturbation approach to limit cycle analysis in
legged locomotion systems. In Decision and Control, 1990., Proceedings of the 29th
IEEE Conference on, 1989–1994. IEEE. (cited on page 3)

Li, Z. and Montgomery, R., 1990. Dynamics and optimal control of a legged robot in
flight phase. In Robotics and Automation, 1990. Proceedings., 1990 IEEE International
Conference on, 1816–1821. IEEE. (cited on page 4)

Mahindrakar, A. D. and Banavar, R. N., 2005. A swing-up of the acrobot based on
a simple pendulum strategy. International Journal of Control, 78, 6 (2005), 424–429.
(cited on pages 7 and 44)

Marhefka, D. and Orin, D., 1999. A compliant contact model with nonlinear damp-
ing for simulation of robotic systems. Systems, Man and Cybernetics, Part A: Systems
and Humans, IEEE Transactions on, 29, 6 (1999), 566–572. (cited on pages 10 and 15)

M’Closkey, R. and Burdick, J., 1991. An analytical study of simple hopping robots
with vertical and forward motion. In Robotics and Automation, 1991. Proceedings.,
1991 IEEE International Conference on, 1392–1397. IEEE. (cited on page 4)

M’Closkey, R. and Burdick, J., 1993. Periodic motions of a hopping robot with
vertical and forward motion. The International journal of robotics research, 12, 3 (1993),
197–218. (cited on page 4)

Michalska, H.; Ahmadi, M.; and Buehler, M., 1996. Vertical motion control of a
hopping robot. In Robotics and Automation, 1996. Proceedings., 1996 IEEE Interna-
tional Conference on, vol. 3, 2712–2717. IEEE. (cited on page 3)

Mita, T.; Hyon, S.; and Nam, T., 2001. Analytical time optimal control solution for a
two-link planar aerobot with initial angular momentum. Robotics and Automation,
IEEE Transactions on, 17, 3 (2001), 361–366. (cited on page 6)

Miyashita, N.; Kishikawa, M.; and Yamakita, M., 2006. 3d motion control of 2 links
(5 dof) underactuated manipulator named acrobox. In American Control Conference,
Minneapolis, Minnesota, USA. IEEE. (cited on page 71)

Morris, B.; Westervelt, E.; Chevallereau, C.; Buche, G.; and Grizzle, J., 2006.
Achieving bipedal running with rabbit: Six steps toward infinity. Fast Motions in
Biomechanics and Robotics, (2006), 277–297. (cited on page 5)

Muskinja, N. and Tovornik, B., 2006. Swinging up and stabilization of a real in-
verted pendulum. Industrial Electronics, IEEE Transactions on, 53, 2 (2006), 631–639.
(cited on page 45)

Nagarajan, U.; Kantor, G.; and Hollis, R. L., 2009. Trajectory planning and
control of an underactuated dynamically stable single spherical wheeled mobile
robot. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,
3743–3748. IEEE. (cited on page 45)

BIBLIOGRAPHY 107

Nakajima, R.; Tsubouchi, T.; Yuta, S.; and Koyanagi, E., 1997. A development of
a new mechanism of an autonomous unicycle. In Intelligent Robots and Systems,
1997. IROS’97., Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 2,
906–912. IEEE. (cited on page 45)

Nam, T.; Fukuhara, Y.; Mita, T.; and Yamakita, M., 2002. Swing-up control and
avoiding singular problem of an acrobot system. In SICE 2002. Proceedings of the
41st SICE Annual Conference, vol. 5, 2990–2995. IEEE. (cited on page 7)

Ohashi, E. and Ohnishi, K., 2006. Hopping height control for hopping robots.
Electrical Engineering in Japan, 155, 1 (2006), 64–71. (cited on page 4)

Okawa, A.; Keo, L.; and Yamakita, M., 2009. Realization of acrobatic turn via
wheelie for a bicycle with a balancer. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 2965–2970. IEEE. (cited on page 7)

Olfati-Saber, R., 2000. Control of underactuated mechanical systems with two de-
grees of freedom and symmetry. In American Control Conference, 2000. Proceedings
of the 2000, vol. 6, 4092–4096. IEEE. (cited on page 7)

Olfati-Saber, R., 2002. Normal forms for underactuated mechanical systems with
symmetry. Automatic Control, IEEE Transactions on, 47, 2 (2002), 305–308. (cited on
page 7)

Olfati-Saber, R. and Megretski, A., 1998. Controller design for a class of underac-
tuated nonlinear systems. In Decision and Control, 1998. Proceedings of the 37th IEEE
Conference on, vol. 4, 4182–4187. IEEE. (cited on page 7)

Olsson, H.; Åström, K.; Canudas de Wit, C.; Gäfvert, M.; and Lischinsky, P.,
1998. Friction models and friction compensation. European journal of control, 4
(1998), 176–195. (cited on page 18)

Park, J. and Kwon, O., 2003. Impedance control for running of biped robots. In
Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME In-
ternational Conference on, vol. 2, 944–949. IEEE. (cited on page 6)

Playter, R. and Raibert, M., 1992. Control of a biped somersault in 3d. In Intelligent
Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ International Conference on,
vol. 1, 582–589. IEEE. (cited on pages 3 and 6)

Poulakakis, I. and Grizzle, J., 2007. Monopedal running control: Slip embedding
and virtual constraint controllers. In Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, 323–330. IEEE. (cited on page 5)

Poulakakis, I. and Grizzle, J., 2009a. Modeling and control of the monopedal robot
thumper. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on, 3327–3334. IEEE. (cited on page 5)

108 BIBLIOGRAPHY

Poulakakis, I. and Grizzle, J., 2009b. The spring loaded inverted pendulum as the
hybrid zero dynamics of an asymmetric hopper. Automatic Control, IEEE Transac-
tions on, 54, 8 (2009), 1779–1793. (cited on page 5)

Rad, H.; Gregorio, P.; and Buehler, M., 1993. Design, modeling and control of a
hopping robot. In Intelligent Robots and Systems’ 93, IROS’93. Proceedings of the 1993
IEEE/RSJ International Conference on, vol. 3, 1778–1785. IEEE. (cited on page 4)

Raibert, M., 1986. Legged robots that balance. Massachusetts Institute of Technology.
(cited on pages xiii, 2, 3, 4, and 6)

Raibert, M.; Brown, H.; and Chepponis, M., 1984. Experiments in balance with a
3d one-legged hopping machine. The International Journal of Robotics Research, 3, 2
(1984), 75–92. (cited on pages 2 and 6)

Raibert, M. and Brown Jr, H., 1984. Experiments in balance with a 2d one-legged
hopping machine. ASME Transactions Journal of Dynamic Systems and Measurement
Control B, 106 (1984), 75–81. (cited on page 2)

Raibert, M.; Chepponis, M.; and Brown Jr, H., 1986. Running on four legs as
though they were one. Robotics and Automation, IEEE Journal of, 2, 2 (1986), 70–82.
(cited on page 3)

Sayyad, A.; Seth, B.; and Seshu, P., 2007. Single-legged hopping robotics re-
searchâĂŤa review: A review. Robotica, 25, 5 (2007), 587–613. (cited on page
3)

Schwind, W. and Koditschek, D., 1995. Control of forward velocity for a simplified
planar hopping robot. In Robotics and Automation, 1995. Proceedings., 1995 IEEE
International Conference on, vol. 1, 691–696. IEEE. (cited on page 4)

Seipel, J. and Holmes, P., 2005a. Running in three dimensions: Analysis of a point-
mass sprung-leg model. The International Journal of Robotics Research, 24, 8 (2005),
657–674. (cited on page 6)

Seipel, J. and Holmes, P., 2006. Three-dimensional translational dynamics and sta-
bility of multi-legged runners. The International Journal of Robotics Research, 25, 9
(2006), 889–902. (cited on page 6)

Seipel, J. E., 2005. The stability of point-mass hoppers with varying morphology and
minimal feedback. In Robotics: Science and Systems, 305–310. (cited on page 6)

Seipel, J. E. and Holmes, P. J., 2005b. Three-dimensional running is unstable but
easily stabilized. In Climbing and Walking Robots, 585–592. Springer. (cited on page
6)

Shimizu, T.; Nakaura, S.; and Sampei, M., 2006. The control of a bipedal running
robot based on output zeroing considered rotation of the ankle joint. In Decision
and Control, 2006 45th IEEE Conference on, 6456–6461. IEEE. (cited on page 5)

BIBLIOGRAPHY 109

Spong, M., 1995. The swing up control problem for the acrobot. Control Systems,
IEEE, 15, 1 (1995), 49–55. (cited on pages 7, 42, and 44)

Spong, M. W., 1994. Swing up control of the acrobot. In Robotics and Automation,
1994. Proceedings., 1994 IEEE International Conference on, 2356–2361. IEEE. (cited on
pages 7 and 44)

Sung, S. and Youm, Y., 2007. Landing motion control of articulated hopping robot.
International Journal of Advanced Robotic Systems, 4, 3 (2007), 303–312. (cited on page
4)

Takahashi, T.; Yamakita, M.; and Hyon, S., 2006. An optimization approach for
underactuated running robot. In SICE-ICASE, 2006. International Joint Conference,
3505–3510. IEEE. (cited on page 4)

Ur-Rehman, F., 2005. Steering control of a hopping robot model during the flight
phase. IEE proceedings. Control theory and applications, 152, 6 (2005), 645–653. (cited
on page 4)

Vakakis, A.; Burdick, J.; and Caughey, T., 1991. An" interesting" strange attractor
in the dynamics of a hopping robot. The International journal of robotics research, 10,
6 (1991), 606–618. (cited on page 3)

Vermeulen, J.; Lefeber, D.; and Verrelst, B., 2003. Control of foot placement,
forward velocity and body orientation of a one-legged hopping robot. Robotica, 21,
1 (2003), 45–57. (cited on page 4)

Wu, A. and Geyer, H., 2013. The 3-d spring–mass model reveals a time-based dead-
beat control for highly robust running and steering in uncertain environments.
IEEE Trans on Robotics, 29, 5 (October 2013), 1114–1124. (cited on page 6)

Xin, X. and Kaneda, M., 2001. A new solution to the swing up control problem for
the acrobot. In SICE 2001. Proceedings of the 40th SICE Annual Conference. Interna-
tional Session Papers, 124–129. IEEE. (cited on pages 7 and 44)

Xin, X.; Mita, T.; and Kaneda, M., 2004. The posture control of a two-link free flying
acrobot with initial angular momentum. Automatic Control, IEEE Transactions on,
49, 7 (2004), 1201–1206. (cited on page 6)

Xinjilefu, X.; Hayward, V.; and Michalska, H., 2009. Stabilization of the spa-
tial double inverted pendulum using stochastic programming seen as a model of
standing postural control. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS
International Conference on, 367–372. IEEE. (cited on page 71)

Yamakita, M.; Yonemura, T.; Michitsuji, Y.; and Luo, Z., 2002. Stabilization of
acrobat robot in upright position on a horizontal bar. In Robotics and Automation,
2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 3, 3093–3098. IEEE.
(cited on pages 7 and 71)

110 BIBLIOGRAPHY

Yonemura, T. and Yamakita, M., 2004. Swing up control of acrobot based on
switched output functions. In SICE 2004 Annual Conference, vol. 3, 1909–1914. IEEE.
(cited on pages 7 and 71)

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Hopping Robots
	Classifications of Hopping Robot Mechanisms
	Planar Hoppers
	Spatial Hoppers

	Balancing Robots

	Thesis Outline

	Modelling the Contact between a Sphere and the Ground
	Contact Normal Force
	The New Model
	Equivalent Radius
	Implementation Algorithm

	Coefficient of Restitution

	Friction Force Model
	Example: Rolling Motion of a Sphere
	Equations of Motion
	Results

	Summary

	Balancing Control Algorithm for an Under-actuated Planar Robot
	Robot Model and Motion Equations
	Balancing Controller
	Modifying the Controller

	Stability Analysis
	Gain Calculations
	Following a Trajectory
	Simulations
	Perfect Modelling
	Considering Model Imperfections
	Imperfections that Influence the Balanced Configuration

	Comparison to other Control Algorithms
	Balancing Motion of a Curved-foot 2D Balancer Robot
	Wheelfoot 2D Balancer
	Camfoot 2D Balancer

	Summary

	Hopping Motion of an Under-actuated Planar Robot
	Robot Model and Motion Equations
	Control Strategies
	Trajectory-tracking Controller
	Launching Phase
	Flight Phase
	Landing and Rebalancing

	Discussion on Simulation Results
	Summary

	Balancing Control Algorithm for a 3D Under-actuated Robot
	Robot Model
	Kinematics of the Spherical Passive Joint
	Kinematics of the Knee Joint – A Double Cardan Joint

	Definitions
	Bending and Swivelling Motions
	Kinematics of Bend and Swivel

	Motion Equations
	Control Algorithm
	Simulation Results
	Summary

	Conclusion
	Thesis Contributions
	Future Work

