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Abstract. This paper presents a new control algorithm, based

on angular momentum, for balancing a planar inverted double pen-

dulum robot having one degree of underactuation. The robot may

either pivot about a fixed point, or roll with a curved foot over a flat

ground. The controller is able to stabilize the robot in any unstable

balanced configuration, and to follow arbitrary motion trajectories

without losing balance. The latter necessarily involves some track-

ing error. Several simulation results are presented.

1 Introduction

This paper considers the problem of balancing a planar inverted double
pendulum (IDP) consisting of two bodies connected by an actuated revolute
joint. The lower body contains a curve, called the foot, which makes a rolling
contact with a flat supporting surface (the ground). If the curve shrinks to
a single point then the rolling contact simplifies to a passive revolute joint.
In this case, the IDP resembles the acrobot (for acrobatic robot) which
was introduced by Hauser and Murray (1990). The control problem for the
acrobot has been studied by several researchers. The pioneering work of
Spong (1995) used a LQR controller for balancing the acrobot in its upright
equilibrium position. Xin and Kaneda (2001), Inoue et al. (2007) and Lai
et al. (2005) also used the same controller for balancing the acrobot.

Berkemeier and Fearing (1999) introduced a controller based on zero
dynamics for trajectory tracking of the acrobot. They found a class of
interesting feasible trajectories for the acrobot and achieved theoretically
accurate trajectory tracking performance using their proposed controller.

Yamakita et al. (2002), and Yonemura and Yamakita (2004) proposed
an output zeroing controller for balancing the acrobot. Their proposed con-
troller uses an output function which is defined by the angular momentum
and one other new state. To work out the value of the torque, they had to
calculate the third derivative of the angular momentum.
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Grizzle et al. (2005) considered the general case and designed a nonlin-
ear controller for mechanical systems with one degree of underactuation.
Their output function becomes the same as that proposed by Yamakita
et al. (2002) and Yonemura and Yamakita (2004) for the acrobot case. This
approach also needs to work out the third derivative of the angular momen-
tum.

In this paper we introduce a new simple controller for an IDP mechanism
which is based on its angular momentum about the contact point between
the robot and the ground. The new controller is able to follow setpoint
commands, in which only the target configuration is given, and also motion
trajectory commands, in which the motion of the actuated joint is a pre-
scribed function of time. However, the latter necessarily involves significant
tracking errors for the purpose of maintaining balance. The controller works
with both a point foot and a curved foot.

2 Model of an IDP

We consider an IDP consisting of two links connected by an actuated rev-
olute joint. The lower link contains a surface called the foot, which makes
contact with the ground at a single point. Three foot shapes are considered,
as shown in Figure 1: a single point, a circular arc and a general convex
curve. In the first case, the contact can be modelled as a revolute joint. In
the other cases, it must be modelled as a rolling-contact joint. In all three
cases, the joint has a single joint variable, q1, which is an angle. We assume
that the ground is flat and horizontal, and that there is no slipping or loss
of contact betwen the foot and the ground.

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

a) pointfoot balancer b) wheelfoot balancer c) camfoot balancer 

Figure 1. Robot models and parameters
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3 Controlling Angular Momentum

In this section, we develop a control law for the case of a pointfoot balancer.
Let XG denote the horizontal displacement of the centre of mass (CoM)
relative to the contact point, and let L denote the angular momentum of
the robot about the contact point. The conditions for balance are: XG = 0
and q̇1 = q̇2 = 0. However, as ẊG and L are both linear functions of q̇1 and
q̇2, the two velocity constraints can be replaced with ẊG = 0 and L = 0.
Now, the rate of change of angular momentum of a multibody system about
any fixed point equals the moment about that point of the external forces
acting on the system. As we have chosen to express L at the contact point,
which is the one point about which the moment of the ground reaction force
is always zero, it follows that L̇ must equal the moment of the gravitational
force about the contact point. So we have

L̇ = −(m1 +m2)gXG , (1)

(where g is gravitational acceleration) and therefore also

L̈ = −(m1 +m2)gẊG . (2)

The conditions for balance can now be written L = L̇ = L̈ = 0; so
we consider the angular momentum as an output function and define a
feedback controller that drives the output function to zero exponentially.
So the control law would be

τ = kddL̈+ kdL̇+ kpL+ τd , (3)

where kdd, kd and kp are controller gains, and τd is the correct holding
torque at the actuated joint for the desired balanced configuration. The
effect of τd is to make this configuration an equilibrium point of the closed-
loop system. If qd1 and qd2 are the joint angles in the desired configuration,
then

τd = m2lc2g cos(q1 + q2) . (4)

This controller is equivalent to

τ = −kvẊG − kxXG + kpL+ τd (5)

where kv = (m1+m2)gkdd and kx = (m1+m2)gkd. We use this alternative
control law for balancers that make a rolling contact with the ground. Note
that these control laws are not robust to modelling errors: if τd is not exactly
the correct holding torque then the controller will not converge exactly to
the desired configuration, but to a nearby one instead.
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3.1 Stability Analysis and Gain Calculation

Considering the nonlinear state-space equations for an IDP as

ẋ = f(x) + g(x) . u (6)

where x = (q1−qd1 , q2−qd2 , q̇1, q̇2), and knowing that u = τ is a function of
x, we will have ẋ = h(x). Linearizing about x = 0 gives

ẋ = Ax (7)

where A = ∂h
∂x

|x=0 is a 4 × 4 matrix. To check the stability of the system
and calculate the controller gains, first we need to calculate the eigenval-
ues of matrix A, which are the roots of its characteristic equation. The
characteristic equation for the pointfoot balancer has the general form:

λ4 + (b1kdd − b2kp)λ
3 + (b3kd − α)λ2 + (b4kp)λ+ a = 0 (8)

where bi, α and a are parameters which are dependent on matrix A and
the desired configuration. This system is stable if all four eigenvalues are
negative. Since a is always positive, one possible solution for Equation 8
would be

λ1 = λ2 = λ3 = λ4 = −p (9)

so
(λ+ p)4 = λ4 + 4pλ3 + 6p2λ2 + 4p3λ+ p4 = 0 (10)

By this assumption, all poles of the closed loop system are negative (p = 4
√
a)

so the system is always stable and the controller gains become

kp =
4 p3

b4
, kd =

6 p2 + α

b3
, kdd =

4 p+ b2 kp

b1
. (11)

4 Rolling Contact

Rolling contact involves a moving contact point. If R(q1) expresses the
radius of curvature of the foot at the contact point as a function of the
joint angle q1, then the velocity of the contact point is −R(q1)q̇1. For
the pointfoot balancer, R(q1) = 0 for all q1; for the wheelfoot balancer,
R(q1) is a positive constant; and for the camfoot balancer, we have only
that R(q1) ≥ 0 for all q1, which is the general case. Note that R(q1) is,
in general, only a piecewise-continuous function of q1. If R(q1) changes
discontinuously at some value of q1 then the velocity of the contact point
also changes discontinuously.
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To balance on a rolling contact, we use the control law in Equation
5. As XG is defined to be the horizontal position of the CoM relative to
the contact point, it follows that ẊG is the horizontal velocity of the CoM
relative to the contact point; so ẊG is capable of changing discontinuously.
The method of calculating gains is the same as for the pointfoot balancer,
although Equation 8 now contains a few small-magnitude terms that are
nonlinear in the gains. We have ignored these terms when calculating the
gains.

5 Following a Trajectory

To make the robot move from one balanced configuration to another, one
simply changes τd to the correct value for the new configuration. However,
to make the robot follow a prescribed trajectory is harder. We define a
motion trajectory for an IDP to be an equation that specifies q2 as an explicit
function of time. In general, following such a trajectory will be physically
impossible without losing balance. Therefore, we expect the controller to
follow the trajectory as nearly as possible subject to the constraint that
it must maintain the robot’s balance. This implies significant trajectory
tracking errors.

To implement trajectory following, we use the control law in Equation 3,
but replace L with (L−Ld) and calculate τd differently. Ld is the theoretical
value of L assuming that the robot happens to be perfectly balanced at the
current instant and following the trajectory exactly; and τd is likewise the
theoretical value of τ under these same assumptions.

6 Simulation Results

The parameters that we have used in our simulations are shown in Table
1. The radius of the foot of the wheelfoot balancer is 5cm. The foot of the
camfoot balancer is composed of a clothoid curve segment and its mirror
image, the two being joined to form a shield shape with a sharp point at
the bottom. The radius of curvature of the clothoid is 0.15 immediately
adjacent to the sharp point, and reduces gradually with increasing distance
from the point. In an upright configuration, camfoot is pivotting on its
sharp point. In a crouched configuration, it is rolling on the clothoid.

6.1 Balancing in Upright and Crouched Configurations

Figures 2(a), 2(c) and 2(e) show the pointfoot, wheelfoot and camfoot
balancers moving to an upright balanced position (q2 = 0) from a crouched
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position (q2 = −π
2
). In each case, the initial velocity is zero and the initial

value of q1 is calculated for perfect balance given q2 = −π
2
. Figures 2(b),

2(d) and 2(f) show the corresponding crouching motions, in which each
balancer starts in a balanced upright position (q2 = 0) and moves to a
balanced crouching position (q2 = −π

2
). The gains used for these six motions

are shown in Table 2. In every case, the gains are computed by linearizing
about the target position using the method described in section 3.1. The
curves for the camfoot balancer show sharp changes at about t = 0.5 in
Figure 2(e), and t = 1 in Figure 2(f). These are caused by the large step
change in R(q1) as the balancer transitions between pivotting and rolling.

6.2 Trajectory Tracking

Figure 2(g) shows the pointfoot balancer following a trajectory compris-
ing two steps (including one at t = 0), one ramp and a sine wave. The gains
used in this simulation are computed by linearizing about the target posi-
tion for step and ramp commands, and the midpoint position for the sine
wave command. The graph shows significant tracking errors. However this
is only to be expected, as the command is physically impossible to follow.
Therefore, the control system must find some physically possible trajectory
to follow instead. It is not known what fraction of the tracking error is
physically necessary, and what fraction is due to the controller being less
than perfect.

Table 1. Simulation parameters (SI units)

robots m1 m2 l1 lc1 l2 lc2 I1 I2

pointfoot 7 7 0.5 0.5 0.75 0.75 0 0
wheelfoot

0.5 1 0.3 0.15 0.4 0.2 1

12
m1l

2
1

1

4
m2l

2
2& camfoot

Table 2. Gains

balancing crouching to qd2 = −π
2

robots kdd kd kp kdd kd kp
pointfoot 0.9704 10.2615 21.9843 1.698 11.4853 18.8457
wheelfoot 2.6545 16.3137 27.1036 1.8542 12.4549 21.0603
camfoot 0.625 8.4534 24.2363 2.093 13.0462 20.1408
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Figure 2. Simulation results for balancing upright (a, c, e), crouching (b,
d, f) and trajectory tracking (g)
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7 Conclusions and Future Work

In this paper we have described a new nonlinear angular momentum based
balancing controller for an IDP. Simulation results show very good perfor-
mance of the controller in stabilizing the IDP at unstable balanced configu-
rations with both point and rolling contact between the robot’s foot and the
ground. Simulation results of tracking an arbitrary trajectory (combination
of step, ramp and sine wave) for the pointfoot balancer show significant
tracking errors, but some amount of tracking error is physically necessary
in order to maintain balance. This work is part of a project that aims
ultimately to create a machine with only two actuators that can hop and
balance in 3D.
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