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Abstract This paper explores the attributes of a double-pendulum

robot that determine its ability to balance. A new measure is de-

fined, called the velocity gain, that expresses the degree to which

the robot’s centre of mass will move in response to motion of the

robot’s actuated joint. This measure can be used both to analyse a

robot’s performance and to design robot mechanisms for improved

performance. Some properties of the velocity gain are explained,

and several examples of both good and bad balancing robots are

presented. The significance of this work is that a robot mechanism’s

intrinsic ability to balance sets a physical upper limit to the robot’s

attainable performance at balancing tasks, which is independent of

the choice of control system.

1 Introduction

Balancing is an important activity for some kinds of mobile robot. A great
deal of research has been devoted to the development of control systems for
balancing, of which Grizzle et al. (2005); Spong (1995); Xinjilefu et al. (2009)
is just a small sample; but there appears to have been no corresponding
effort to study the physical attributes of a robot mechanism—its kinematic
and inertia parameters—that govern its ability to perform balancing tasks.

This paper presents a study of balancing in 2D performed by a planar
double-pendulum robot making a single point contact with a supporting
surface, this being the simplest case of a self-balancing mobile robot. As
the shape of the foot is an important factor, this paper considers the case
of a general convex curve that may contain sharp points. Thus, both the
case of balancing on a sharp point and balancing on a rolling contact will
be considered.

To achieve and maintain balance, the control system must adjust the
robot’s centre of mass (CoM) indirectly via motions of the actuated joint.
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The overall performance will depend on the quality of the sensors, the effec-
tiveness of the control system, and the degree to which the CoM is affected
by motions of the actuated joint. This last item is the subject of this paper:
it is a property of the mechanism itself, and it sets a physical upper limit
to the achievable performance of the robot.

This paper introduces a dimensionless, quantitative measure of the bal-
ancing ability of a double-pendulum robot mechanism, called the velocity

gain. It expresses the ratio between a velocity change at the actuated joint
and the resulting velocity change of the CoM. The measure is defined; a
method for calculating it is described; a few basic properties are stated;
and a formula is presented for the special case of a sharp pointed foot.
Then the issue of parameter reduction is discussed, and how parameters
can be varied without changing the velocity gain. Finally, several examples
of double-pendulum mechanisms are presented, including both good and
bad balancers, and balancers with unusual properties; and some general
comments are made on the design of good balancers.

2 Velocity Gain

Figure 1(a) shows a planar double pendulum consisting of a leg (link 1)
connected to a torso (link 2) via an actuated revolute joint (joint 2). The
leg makes a single-point rolling contact with the ground, which we shall call
joint 1. We assume that there is no slipping or loss of contact between the
leg and the ground. Joint 1 allows a single degree of motion freedom, and
can be characterized by a single joint variable, q1, which is an angle, plus
a description of the shape of the foot. (We shall assume that the ground
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Figure 1. Definition of velocity gain (a), and parameters of a double pen-
dulum modelled as a planar 2R mechanism (b).
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is flat and horizontal.) If the contact point coincides with a sharp point on
the foot, then joint 1 simplifies to a revolute joint for some range of joint
angles that depends on the exact shape of the foot.

Figure 1(a) also shows a vector c, which locates the robot’s CoM relative
to the contact point, and an angle φ, which gives the direction of c. φ has
been shown measured relative to the horizontal, but it could be measured
relative to any desired fixed direction.

We seek a performance measure for the balancing ability of this robot.
Now, the task of balancing requires control of the angle φ, but the only
quantity that the control system can control directly is q2. Therefore, the
ability of this robot to balance depends critically on the degree to which
changes in q2 can cause changes in φ.

As this property will vary with configuration, let us define the following
quantity as a measure of a double pendulum’s balancing performance locally
at configuration q = [q1 q2]

T:

Gv(q) = lim
∆q2→0

∆φ

∆q2

=
∆φ̇

∆q̇2

, (1)

where ∆φ̇ and ∆q̇2 are the instantaneous changes in φ̇ and q̇2 caused by an
impulsive torque applied at joint 2 with the mechanism in configuration q.
The magnitude of the impulse is unimportant, as it does not affect the ratio.
Gv can also be defined as the ratio of two accelerations: Gv(q) = ∆φ̈/∆q̈2

where ∆φ̈ and ∆q̈2 are the instantaneous changes in φ̈ and q̈2 due to a
step change in applied torque at joint 2. Nevertheless, we shall call Gv the
velocity gain of the mechanism. A double pendulum is a good balancer if
|Gv| is sufficiently large at every configuration where balancing is required
to take place.

Calculation Method. To calculate Gv(q), the first step is to calculate
the joint-space inertia matrix at q, which we shall call H , and use it to
work out the step response to a nonzero impulse at joint 2:

[

∆q̇1

∆q̇2

]

= H
−1

[

0
u

]

, (2)

where u 6= 0 is the impulse magnitude. This equation can be solved for
∆q̇1, giving

∆q̇1 =
−H12

H11

∆q̇2 . (3)

The next step is to calculate c and ∆ċ. The latter depends on q and ∆q̇2

only, as ∆q̇1 can be eliminated using Eq. 3. (Bear in mind that ċ gives
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the relative velocity of the CoM with respect to the moving contact point.)
Finally, we calculate Gv(q) from

Gv(q) =
∆φ̇

∆q̇2

=
b · ∆ċ

|c|∆q̇2

, (4)

where b is a unit vector at right-angles to c in the direction of increasing φ.

A Special Case. If the robot is pivotting on a sharp point, so that joint
1 is effectively a revolute joint, then Gv depends only on q2, and is given
by the following relatively simple formula (which takes approximately one
page of algebra to derive):

Gv(q2) =
c2
y + m2 cxc2x

m1+m2

c2
x + c2

y

−
H12

H11

(5)

where

H11 = m1(r
2
1 + c2

1) + m2(r
2
2 + (L + c2x)2 + c2

2y)

H12 = m2(r
2
2 + c2x(L + c2x) + c2

2y)

cx = (m1c1 + m2(L + c2x))/(m1 + m2)

cy = m2c2y/(m1 + m2)

c2x = c2 cos(q2) and c2y = c2 sin(q2) .

The seven parameters mi, ci, ri and L define the kinematic and inertia
properties of the mechanism, and are shown in Figure 1(b). ri is the radius
of gyration of link i: if Ii is the rotational inertia of link i about its CoM
then Ii = mir

2
i .

Properties. Gv is defined everywhere except where c = 0 and values of
q1 where there is a step change in foot curvature at the contact point. (The
latter causes a step change in Gv, making it only a piecewise-continuous
function of q1.) The definition of Gv as the ratio of two angular velocities
makes it a dimensionless quantity. This implies that Gv is invariant with
respect to a uniform scaling of the mass and/or the linear scale of the
mechanism. In general, Gv depends on both q1 and q2, but it becomes
independent of q1 if joint 1 is revolute, and independent of q2 if c2 = 0. Gv

can be positive, negative or zero, and its sign can vary with configuration.
Robust balancing is impossible at or near a zero-crossing of Gv.

Parameter Reduction. Whether the objective is to design or to analyse
a robotic balancer, it is useful to identify a minimal set of parameters that
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determine the value of Gv. The remaining parameters are then redundant in
the sense that they can be varied without affecting Gv. Once these param-
eters are identified, one can use the minimal set to search for a mechanism
with a desired property, and the redundant set to generate a family of other
mechanisms with the same property.

For example, the fact that Gv is mass- and scale-invariant allows us to
set the overall mass and size of the mechanism being analysed or designed
to any convenient fixed value (e.g. L = 1 and m1 + m2 = 1 in Figure
1(b)) without loss of generality. Having found a single mechanism with an
interesting property, one can immediately generate a two-parameter family
of mechanisms with this same property by scaling the mass and size.

In addition to these scalings, there are potentially two more parameter
reductions available. As explained in Featherstone (2008, §9.7), whenever
two bodies are connected by a revolute joint, it is possible to add a particle
of mass m to one of these bodies, and a particle of mass −m to the other,
without altering the dynamics of the mechanism. The only condition is that
the two particles must coincide permanently, which implies that they must
both lie on the joint’s rotation axis. Applying this idea at joint 2 allows
one of the remaining inertia parameters to be fixed; and it can be applied
also at joint 1, if it is revolute, allowing one more parameter to be fixed.
(Something similar is possible at joint 1 if the foot is a circular arc.)

To give a concrete example, if c2 > r2 in Figure 1(b) then it is possible to
add a negative mass m satisfying 0 > m > −m2 to link 2 at joint 2 such that
the modified link has r2 = 0 (i.e., it has become a point mass). Repeating
the process at joint 1 allows us to set r1 = 0. Thus, without loss of generality,
we can restrict our attention to mechanisms satisfying r1 = r2 = 0, L = 1
and m1 + m2 = 1, which implies that Gv(q2) is in fact a function of only
three independent parameters. Having found a mechanism of interest, one
can immediately generate a four-parameter family of mechanisms with the
same property. The zero-gain example in the next section was obtained in
this way.

3 Examples

Table 1 shows the inertia and kinematic parameters of several double-
pendulum mechanisms having a revolute joint 1; and Figure 2 plots their
velocity gains against q2. The parameters are as defined in Figure 1, except
Ii which is defined as Ii = mir

2
i . These mechanisms are all symmetrical

with respect to q2, so it is sufficient to plot Gv in the range 0 to π.
The first example consists of two identical thin rods having unit mass,

unit length and uniform mass distribution. This example has a gain of
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Table 1. Parameters of several balancing mechanisms.

mechanism m1 c1 I1 m2 c2 I2 L
two rods 1 0.5 0.0833 1 0.5 0.0833 1
acrobot 7 0.5 0 7 0.75 0 0.5

good balancer 0.49 0.1714 0.0036 0.11 0.4364 0.0043 0.4
zero gain 0.5 0.2 0.26 0.8 1.125 0.0675 1

zero crosser 2 0.5 0 7 0.75 0 0.5
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Figure 2. Velocity gain vs. q2 for the mechanisms in Table 1.

−1/16 at q2 = 0, increasing in magnitude to −1/4 at q2 = π. That is a
relatively low-magnitude gain, making this a poor balancer. Starting from
an upright position, this mechanism would have to rotate q2 by at least 16◦

in order to correct a 1◦ error in φ.
The next example is the acrobot as described in Berkemeier and Fearing

(1998). (There is more than one published parameter set for this robot.)
This mechanism is a significantly better balancer, with Gv(0) = −0.08867
and Gv(π) = −3.6. It is very common for |Gv| to be larger at π than at 0.
This is partly because the CoM is closer to the foot, implying that |c| in
Eq. 4 is smaller.

The next example is the result of an optimization process: starting with
a mechanism consisting of a 0.4m rod weighing 0.04kg for the leg, a 0.6m
rod weighing 0.06kg plus a 0.05kg point mass at the tip for the torso, and
a 0.05kg point mass at joint 2 representing the joint bearing and drive, the
optimization task was to find the optimal location, rounded to the nearest
cm, of a 0.4kg point mass (representing an actuator) to be added to the

leg. The objective function was
∫ 2π/3

0
Gv(x) dx, and the optimal location

was found to be 0.14m from the foot. This is a good balancer, having
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Figure 3. Effect of foot curvature on velocity gain.

Gv(0) = −0.175. Generally speaking, |Gv(0)| will be large for mechanisms
with a long, light torso and a short, heavy leg, the masses being concentrated
at the tip of the torso and towards the bottom of the leg.

The next example has a velocity gain of zero everywhere, and is therefore
impossible to balance. It was obtained by starting with the parameter set
m1 = c1 = 0, I1 = I2 = 0.2 (value not critical), m2 = c2 = L = 1, which has
the desired zero-gain property but specifies physically-impossible inertias,
and then manipulating it in ways that do not affect Gv (as explained earlier)
in order to find a parameter set with physically-possible inertias.

The final example shows Gv starting negative, but crossing zero as q2

approaches π, ending up with Gv(π) = 5.6. Despite the high gain at π, this
is a poor balancer at |q2| < 2.6. Typically, we see this pattern when joint
1 lies inside the orbit of the CoM. This example was obtained from the
acrobot parameter set by reducing the mass at joint 2 until the orbit of the
CoM comfortably included joint 1.

Having considered several examples where the robot is pivotting on a
sharp point, so that joint 1 is effectively a revolute joint, let us now consider
the case of a circular foot making rolling contact with the ground, in which
case joint 1 is a rack-and-pinion joint. The value of Gv for a general curved
foot is instantaneously identical to that for a circular foot matching the
tangent and radius of curvature of the general foot at the contact point.

Figure 3 plots Gv against q2 for a modified version of the two-rods ex-
ample in Table 1, in which the foot is a circle of radius R centred on the
point (R, 0) in the coordinate system of Figure 1(b). As Gv now depends
on q1 as well as q2, three curves are plotted for each value of R: one in
which q1 has been calculated to put the mechanism in its unstable balanced
configuration for each given value of q2 (solid line), and two in which q1 is
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offset by 30◦ each side of unstable balance (dashed lines).
Curves are plotted for R = 0, R = 0.3 and R = 0.6. The first is just a

repeat of the two-rods curve in Figure 2, while the others show a general
pattern of Gv becoming more positive as R increases. As a result, R = 0.3
makes for a very poor balancer, but R = 0.6 is almost twice as good as
R = 0. For this mechanism, there is a qualitative change at R = 0.5, which
is the point where the circle centre crosses inside the orbit of the CoM.
Another qualitative change occurs at R = 1, which is where configuration
q = 0 switches from unstable to stable balance. Systems with 0.5 < R < 1
may be able to exploit both stable and unstable balance, and switch between
them, if the controller knows what to do.

4 Conclusion

This paper has presented a dimensionless measure, called the velocity gain,
which quantifies the ability of a planar double-pendulum robot to perform
balancing tasks. It can be used to analyse a given mechanism, or to design
a mechanism that achieves a desired level of performance. Several examples
are presented showing how the velocity gain is affected by the mechanism’s
kinematic and inertia parameters and the shape of the foot. The significance
of this work is that velocity gain sets a physical upper limit to a robot’s
balancing ability, which is independent of the choice of control system. The
concept of velocity gain can be extended to 3D.
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