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Mechanical Shock Propagation Reduction in Robot

Legs

B. Roodra P. Singh1,2 and Roy Featherstone1

Abstract—This paper shows how the mass distribution in a
robot’s leg affects the propagation of mechanical shocks from
the foot to the torso. An example is given of a leg design that
propagates no shock at all; and a formula is given for the
propagation of shock in a general robot leg, modelled as a chain
of rigid bodies, assuming that the foot makes a point or small-
area contact when it strikes the ground.

Index Terms—legged robots, dynamics, mechanism design.

I. INTRODUCTION

MECHANICAL shocks arise in legged robots whenever

a foot strikes a supporting surface. These shocks can

propagate up the leg and into the torso, where they can have

a variety of undesirable effects such as saturating accelerom-

eters, shaking loose screws and electrical connectors, blurring

camera images, and so on. It is therefore a good idea to try to

minimize the magnitudes of shocks reaching the torso. Two

obvious ways to do this are soft feet and velocity matching

of the foot to the ground before landing. This paper considers

a third possibility, which is to design the mass distribution

within the leg so as to reduce the transmission of shocks from

the foot to the torso. If the mass distribution satisfies certain

criteria then the transmission of shocks can be reduced all the

way to zero.

The point of this paper is that there is often some freedom

to choose where to place the parts in a robot leg design, which

affects the overall mass distribution within the leg. So there is a

possibility to exploit this freedom to reduce shock propagation.

This gives the designer one more tool to use in addition to

techniques such as springs and soft feet.

Specifically, this paper considers the following problem.

Given a robot leg modelled as a chain of rigid bodies, which

is in a known configuration at the moment the foot strikes

the ground, what is the relationship between a step change

in the velocity of the foot and the corresponding step change

in the velocity of a chosen point in the torso, and how is this

relationship affected by the mass distribution within the leg? It

is assumed that the step change in the foot’s velocity is caused

by a ground-reaction impulse, and that some fraction of this

impulse is propagated up the leg, eventually reaching the torso.
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It is also assumed that the foot hits the ground at a single point,

or an area small enough that it can be approximated with a

single point located at the centre of pressure.

The paper is organized as follows. First, previous works

on shock reduction are reviewed; then a little background

theory is presented; then a design for a simple three-link leg is

presented in which the transmission from the foot to the upper

leg of any shock caused by a ground-reaction impulse lying in

the plane of the leg is exactly zero. Finally, a general formula

is given for the matrix that maps a step change in velocity

of a point P in the foot to the corresponding step change in

velocity of a point Q in the torso, where P is the point where

the foot strikes the ground. This matrix provides a measure

of shock propagation that could be used to optimize the leg’s

design parameters.

II. PREVIOUS WORKS

One of the simplest ways to cushion the torso from impacts

at the feet is to use a spring. Raibert’s original hopping robots

[20] used the compressibility of air in their pneumatic pistons

as a spring, mainly to recycle energy from one hop to the

next, but it also had the side-effect of protecting the torso from

shock. Alexander [1] proposed the use of springs as foot pads

to absorb shocks when the foot of a legged robot experiences

large impact forces. The reasoning in [1] to use padded feet

in robots was biologically inspired from the padded paws of

mammals.

As robots became heavier and faster, the need to absorb

the large impact forces and prevent them from propagating

up the leg and into torso of the robot gained further attention

for legged robots such as bipeds. In [26], an intricate foot

mechanism was developed to aid a biped robot in locomotion

through absorption of impact forces using a shock-absorbing

foam; while [18] proposed to actively control damping in the

leg of a biped robot, in order to reduce the magnitude of the

impacts during locomotion.

Impact force reduction strategies for bipeds and quadrupeds

gained attention in robot leg/foot design in the last two

decades; for example, a biped with flexible feet in [4], use of

a soft-landing trajectory with an optimal velocity for a planar

hopping robot in [22], optimized leg motion trajectories for a

hexapod in [21], and a comparison of different types of foot

designs for humanoid robots in [17]. Another foot mechanism

is proposed in [14] to measure impact forces using force-

sensing resistors, which then leads to a passivity-based control.

A common reasoning for shock reduction can be noticed in

[4], [14], [16], [17], [18], [21], [22], [26], which is to prevent
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the impact forces from propagating to the robot’s leg and torso

where they might damage the robot’s components or make it

unstable and degrade its locomotion performance.

In the last decade, in addition to using the direct method

of having soft feet and active impedance regulation, some

other shock reduction strategies, sometimes in combination

with these two, have been proposed. One of these is the

terrain adaptive controller in [11] that changes the gains and

structure of the controller based on readings from a force

sensor at the foot. A bio-inspired method in [15] bases the

design of a biped robot foot on the flexibility of the human

foot with toes and heels. Several other techniques that aim to

reduce impact forces have been proposed, such as optimizing

robot leg configuration, where a bent leg is advantageous in

reducing the impact forces [25], reinforcement-learning-based

active impedance control [6], model-based passive compliance

using configuration-dependent stiffness and damping of the

robot [5], calculating change in joint velocities resulting from

impulsive forces using robot configuration for grasping ap-

plications in [24], using a specific pose and joint stiffness

on landing that reduces impact forces [3] for planar robots,

employing artificial muscles and a magnetorheological brake

[13], and biologically inspired soft material based foot pad

designs to enhance friction and strong damping in [12].

Another recent work [23] has focused on different materials for

foot design to choose a particular trade-off between stiffness

and damping that enables energy-efficient foot design along

with reduced impact forces. All is not perfect with a springy

foot though: [19] shows that a spring-loaded foot can cause

rebound behavior, while for active control methods the amount

of time required for active impedance regulation to kick in may

make it unsuitable for absorbing peak impacts.

III. BACKGROUND THEORY

An introduction to impulsive dynamics can be found in [10],

and a brief treatment in [9]. Impulse is defined to be the time

integral of force. However, we are concerned with a special

kind of impulse, which is the limit as ∆t → 0 of a force

f/∆t acting over an interval ∆t. Such impulses arise when

rigid bodies collide, and they cause step changes in velocity.

If a rigid body having inertia I is subjected to an impulse

ι then the resulting change in velocity, ∆v, is given by the

impulsive equation of motion

ι = I∆v , (1)

where ι and ∆v are spatial (6D) vectors, and I is a spatial

inertia (a 6×6 matrix) [9]. If the body is connected to another

body via a joint then the response changes, and the equation

becomes

ι− ιJ = I∆v ,

where ιJ is the impulse transmitted through the joint to the

other body. Given the inertias of the two bodies and the

kinematics of the joint, it is possible to express ιJ as a function

of ι, and hence to eliminate it from this equation, resulting in

ι = IA∆v , (2)

Fig. 1. The relationship between the line of action of an impulse acting on
a rigid body and the rotation centre of the velocity it causes.

where IA is the body’s articulated-body inertia [9], which is

the inertia that it appears to have given that it is connected to

another body via a joint.

In this paper we assume that an impulse arising from a

collision can be characterized by its magnitude and line of

action. This assumption is valid if the bodies collide at a single

point or over an area small enough that it can reasonably be

approximated with a point located at the centre of pressure.

The line of action passes through the point of contact, and lies

inside or on the friction cone.

As this paper is concerned only with step changes in

velocity, rather than absolute values, from here on we shall

drop the delta from ∆v, and use the term ‘velocity’ to mean

‘step change in velocity’.

A. The Planar Special Case

A basic result of planar kinematics is that a rigid body’s

velocity at any instant is either a pure translation or a rotation

about a point somewhere in the plane, which is called the

(instantaneous) rotation centre. If an impulse acts on a rigid

body then it produces a pure translation if its line of action

passes through the body’s centre of mass (CoM), and a

pure rotation otherwise. In the latter case, there is a simple

geometrical relationship between the line of action and the

position of the rotation centre.

Referring to Figure 1, suppose that a rigid body receives an

impulse of (signed) magnitude ι acting along a line that misses

the body’s CoM by a distance a. We can place a coordinate

frame with its origin at the CoM and y axis parallel to the line

of action, so that the line passes through the point (a, 0) on the

x axis. Let the body have a mass m and a radius of gyration r,

so that its rotational inertia about its CoM is mr2. The effect

of the impulse can now be calculated as follows. First, the

given impulse can be expressed as the sum of an impulse of

magnitude ι acting along the y axis and an impulsive couple

of magnitude aι, which is the moment of the given impulse

about the origin. The former produces a translational velocity

of magnitude v = ι/m, and the latter produces a rotation about

the CoM of magnitude ω = aι/(mr2). The effect of the given

impulse is the sum of these two velocities, which is a rotation

of magnitude ω about the point (−b, 0), where b is given by

the formula

ab = r2 . (3)
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This result can be verified by observing that a rotation of

magnitude ω about (−b, 0) causes the CoM to translate in the

y direction with magnitude ωb = ι/m. Note that neither m
nor ι appears in (3).

If the body happens to be a cricket or baseball bat, or similar

object, and its handle is located at (−b, 0), then the point (a, 0)
is called the centre of percussion, or, more colloquially, the

‘sweet spot’ [2]. It has the following special property: if a

ball strikes the bat along any trajectory that passes through

the centre of percussion at right angles to the x axis, then

the batsman feels no jarring of his hands (i.e., no mechanical

shock) because the effect of the impact is a pure rotation about

the handle.

Now suppose that the body in Figure 1 is connected to a

second body via an unactuated revolute joint located at (−b, 0).
In this case, no impulse is transmitted through the bearings,

because the velocity caused by the impulse is a rotation about

this point, and so no shock is passed on to the second body.

Now suppose, in addition, that the direction of the impulse

can vary, although the line of action still passes through (a, 0);
and suppose also that the second body has the property that

an impulse acting on this body along the x axis causes the

body-fixed point at (−b, 0) to move in the same direction as

the impulse. In this case, the impulse acting on the first body

can be regarded as the sum of an impulse of magnitude ιx
acting along the x axis and an impulse of magnitude ιy acting

along the original line of action. The result is that ιy causes

only a rotation of the first body about (−b, 0), while ιx causes

both a pure translation of the first body in the x direction and

an impulse in the x direction transmitted from the first to the

second body.

So we have a situation in which both components of the

original impulse have an effect on the first body, but only one

has an effect on the second. The other component has been

prevented from propagating across the joint, and this has been

achieved simply by requiring that the line of action passes

through (a, 0) and the joint is located at (−b, 0). This idea

can be extended to a third body and second joint, which is the

subject of the next section.

In the above, we assumed that the joint is unactuated, but

this is unnecessarily restrictive. All that we really require is

that there is no impulse in the direction of motion allowed

by the joint. So the joint could have passive elements such as

springs and dampers, and it could be actuated by any type

of actuator that does not generate an impulse in response

to a received impulse on one of the bodies. Actuators with

this property include direct-drive motors and any actuator

with a series elastic element. Harmonic drives may or may

not qualify as series elastic elements for the purposes of

calculating impulsive dynamics, depending on how stiff they

are. The test is this: does the output force of the harmonic drive

change during the course of the impact event by an amount that

is significant compared with the impact forces? If the answer

is ‘no’ then it can be regarded as a series elastic element.

IV. AN IDEAL LEG DESIGN

For mammals and birds, and robots that resemble them,

legged locomotion is a mostly planar activity. Therefore, a

Fig. 2. A 3-link planar leg with zero transmission of shocks from the contact
point (or centre of pressure) in the foot to the upper leg.

planar rigid-body model of such a robot is useful because it

can describe most of the motion that takes place, and most of

the forces that arise. This section presents a planar model of

a three-link leg, shown in Figure 2, which has the property

that the propagation of shock from the foot towards the torso

stops at the knee. In a 3D robot equipped with this leg, only

the out-of-plane component of shock would be felt above the

knee.

The design consists of a foot, lower leg and upper leg

connected together via revolute joints at the ankle and knee.

It is assumed that the actuators driving these joints do not

generate impulses of their own, as explained in the previous

section. The important attributes of this design are the six

lengths ai, bi and ri, i = 1, 2, and the angle at the ankle at

the moment of impact, which must be 90◦. The lengths must

satisfy aibi = r2i , as in (3).

This leg works as follows. First, the ground-reaction im-

pulse, ι, can be decomposed into a component ιx along the

line from the contact point to the ankle, and a component ιy
perpendicular to it. The former causes a translational velocity

of the foot in the direction of the impulse, while the latter

causes a rotation of the foot about the ankle. Thus, some

fraction of ιx is propagated from the foot to the lower leg, but

ιy affects only the foot, as explained in the previous section.

Now, the impulse received by the lower leg is perpendicular to

the line between the two joints, and the ankle is located at the

lower leg’s centre of percussion, if the knee is regarded as the

handle, so this impulse causes only a pure rotation of the lower

leg about the knee joint, and therefore does not propagate past

the knee.

Viewed in terms of cricket or baseball bats, this design is

two bats at right angles, each one blocking one component of

the ground-reaction impulse, so that no part of the impulse

reaches the upper leg. Clearly, this idea also works for a two-

link leg, such as is common in robot quadrupeds, in which

case the foot, lower leg and upper leg become the lower leg,
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Fig. 3. Plots of shock propagation versus ankle angle for various values of
r2. The parameters are: a1 = 0.2m, b1 = 0.05m, m1 = 2kg, r1 = 0.1m,
a2 = 0.25m, b2 = 0.16m and m2 = 4kg. The upper leg is modelled as a
0.4m, 5kg uniform thin rod oriented straight up; the knee is directly above the
contact point; and the shock is the worst-case propagation of a step change
in velocity from the ground contact point in the foot to the upper leg point
at the knee, expressed as a velocity ratio.

upper leg and torso, respectively. In principle, the idea can be

extended to 3D, in which case one would need three bats at

right angles: one for each component of the impulse.

An important detail to bear in mind is that because no

component of impulse propagates past the knee, the dynamics

of the rest of the robot is irrelevant. Thus, the knee joint

can have any angle, the upper leg any kinematic and inertia

parameters, and the rest of the robot can have any number of

other limbs in any state of contact with the environment at the

time the foot hits the ground.

The challenge, in designing a leg to work like this, is to

make the inertia parameters satisfy (3). For the foot, this

requires that some mass be present to the rear of the ankle

joint. This can be accomplished by making the foot extend

backwards from the ankle as well as forwards, as shown in

Figure 2. For the lower leg, some mass must be present above

the knee. This has been illustrated in Figure 2 by extending

the lower leg past the knee (the part marked ‘extension’ in the

diagram). This would be a good place to put a knee guard or

an actuator. If there is nothing functional to put here then one

must resort to adding a small amount of dead weight.

Apart from the possibility of a small increase in leg mass,

there is nothing in this design that reduces a legged robot’s

speed or maneuverability. Even the ankle angle can be adjusted

according to need. If shock minimization is a priority then the

robot can choose an ankle angle close to 90◦ on landing; and

if it is not a priority then the robot can do something else.

Likewise, if it is not feasible to design a leg that satisfies

(3) exactly, then one can aim instead to minimize |aibi − r2i |
subject to other design constraints. Such a design will not

reduce shock propagation all the way to zero, but it will still be

better than one that does not try to minimize these quantities.

To investigate the performance of this design, a numerical

experiment was carried out on a 3-link leg considered in

isolation (i.e., no torso) in which the objective was to find out

how the shock propagation is affected by variation in the ankle

angle and the value of r2. The results are plotted in Figure

3, and the fixed parameter values are stated in the caption.

The quantity plotted is the largest singular value of the matrix

R described in the next section. It measures the worst-case

propagation of shock from the ground contact point to a point

in the upper leg at the knee, expressed as a ratio of two velocity

magnitudes. For example, if the ratio is 0.2 then it means that

there exists at least one direction in which a step change in

foot velocity of 1m/s at the contact point causes a step change

at the knee of 0.2m/s, generally in a different direction.

The decision to vary the ankle angle was prompted by

concerns that ‘fixing’ it at 90◦ might be too restrictive; and

the decision to vary r2 was prompted by our opinion that

getting r2 to satisfy (3) in a practical leg design might be

more difficult than r1. The correct value for r2 in this design

is 0.2m, but a practical value is likely to be a little smaller, so

we investigated two smaller values and only one larger one.

The value r2 = 0.22m would require a substantial extension of

the lower leg, and is likely to be impractical (unless it houses

a bulky actuator); but a value of 0.16m is easily achievable

with little or no extension.

One obvious conclusion that can be drawn from Figure 3

is that 90◦ is a good choice of angle regardless of inertia

parameter values. Flexion angles greater than 90◦ place the

heel closer to the ground at the moment of impact, which

increases the chance that the heel will hit the ground before

the impact has been fully absorbed; whereas angles less than

90◦ result in greater shock propagation.

A second conclusion is that if r22 < a2b2 in some proposed

design then even a small increase in r2 will improve the shock

propagation properties of the leg at all ankle flexion angles less

than, equal to and slightly greater than 90◦.

V. A GENERAL FORMULA

This section derives the formula for the matrix that maps a

step change in the velocity of the ground-contact point in the

foot to the consequential step change in velocity of a chosen

point in the torso. Possible choices for the latter include the

torso’s CoM, the position of the inertial measurement unit, and

the rotation centre of the hip joint. This matrix can be used in

various ways to measure the shock propagation properties of

a leg design. For example, the largest singular value provides

a measure of worst-case transmission of shock from the foot

to the chosen point in the torso.

This section uses both spatial and 3-D Euclidean vectors.

To avoid confusion, the latter are marked with an arrow. Thus,

vi denotes the spatial velocity of body i, whereas ~vP denotes

the Euclidean velocity of a body-fixed point located at P .

(Remember that ‘velocity’ means ‘step change in velocity’.)

In the equations below, it is assumed that all quantities are

expressed in coordinates based on a single common Cartesian

coordinate frame.

Figure 4 shows a general robot leg consisting of a chain of

rigid bodies numbered 1 to n connected together by joints also

numbered 1 to n. Body n is the foot; and this body strikes the

ground at point P , causing a ground-reaction impulse of ~ιP ,
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Fig. 4. A general robot leg, modelled as a chain of rigid bodies, in which
the foot has struck the ground at point P .

which in turn causes a velocity of ~vP in the body-fixed point

at P . Body 0 is the torso, and Q is a point of interest in the

torso that may be chosen freely by the user, which acquires

a velocity of ~vQ as a consequence of the foot striking the

ground. The objective of this section is to obtain a formula

for the 3× 3 matrix R that maps ~vP to ~vQ according to

~vQ = R~vP . (4)

The closer R is to zero, the less shock is felt at Q. By defining

R to be a mapping between Euclidean velocity vectors, we

avoid any difficulties associated with physical dimensions and

choice of units.

The torso is characterized by its articulated-body inertia,

IA
0 , which includes the inertial effects of the rest of the robot;

that is, every part of the robot except the leg containing bodies

1 to n. If there are other limbs in the rest of the robot that

make contact with the ground, or other fixed parts of the

environment, then IA
0

includes also the effects of the kinematic

constraints on these other limbs, subject to the assumption

that these constraints do not change as a consequence of the

impact.

If there are at least two other limbs making contact with

the environment then there will be at least one kinematic loop

in the rest of the robot. For this reason, it is probably best to

calculate IA
0

via the projection method [9], which proceeds

as follows. First, let q̇ be the joint-space velocity vector for

the rest of the robot. This vector includes six variables that

describe the velocity of the torso, which is treated as the

floating base. Next, let J be the Jacobian that maps q̇ to v0

(torso velocity) according to

v0 = Jq̇ .

Obtaining J is easy because q̇ already contains the six

variables that define v0, and the other variables have no effect.

Next, let the kinematic constraints on q̇ be given by

Kq̇ = 0 .

This equation can be solved to express q̇ in the form

q̇ = Gẏ ,

where ẏ is a subvector of q̇ containing any maximal set of

independent velocity variables, and G is a full-rank matrix

that spans the null space of K (so KG = 0). Finally, let H

be the joint-space inertia matrix of the rest of the robot. Given

J , G and H , the formula for IA
0

is

IA
0

= (JG(GTHG)−1GTJT)−1 . (5)

(This is equation 7.12 in [9] with JG in place of J and

GTHG in place of H . See also [9, §3.2] for more details

about G.) The inner inversion in (5) is always possible because

H is positive definite and G has full rank. However, the outer

inversion requires that the torso have a full six degrees of

motion freedom.

Having captured all relevant dynamics of the rest of the

robot in IA
0 , we now turn our attention to the leg. Each body

i in the leg is characterized by its rigid-body inertia, Ii, from

which can be calculated its articulated-body inertia, IA
i , which

takes into account the inertial effects of the bodies between

body i and the torso, plus the effects included in IA
0

. Formulae

for calculating articulated-body inertias are given in (21) and

(26) in the appendix.

To calculate R, the first step is to work out the spatial

velocity of the foot, vn, caused by its collision with the

ground. To do this, we use the following equations:

ιn = IA
n vn , (6)

~vP = Pvn , (7)

ιn = PT~ιP , (8)

where (6) is the articulated-body impulsive equation of motion

of the foot, and P is the matrix that maps the spatial velocity

of a rigid body to the linear velocity of the body-fixed point

at P . Its value is

P =





0 Pz −Py 1 0 0
−Pz 0 Px 0 1 0
Py −Px 0 0 0 1



 , (9)

where Px, etc., are the coordinates of P . As can be seen from

(8), P has the additional property that PT maps a Euclidean

impulse vector representing an impulse having a line of action

passing through P to the equivalent spatial vector. Later on,

we will also need the matrix Q, analogous to P , for use with

the point Q.

Given (6)–(8), the calculation of vn from ~vP proceeds as

follows:

~vP = Pvn = P (IA
n )−1ιn = P (IA

n )−1PT~ιP ,

which implies

~ιP = (P (IA
n )−1PT)−1~vP . (10)

Combining (6), (8) and (10) gives

vn = (IA
n )−1ιn = (IA

n )−1PT~ιP

= (IA
n )−1PT(P (IA

n )−1PT)−1~vP .

So we have

vn = B~vP , (11)

where

B = (IA
n )−1PT(P (IA

n )−1PT)−1 . (12)
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The next step is to calculate v0 from vn. To do this we use

an acceleration propagator, A, defined as follows:

A = A1A2 · · ·An , (13)

where Ai is the acceleration propagator from body i to body

i− 1. As the name suggests, these matrices are normally used

to propagate accelerations from one body to another, but in

impulsive dynamics they serve to propagate changes in veloc-

ity. Acceleration propagators are not a new idea, and examples

can be found in [7], [8]. Formulae for calculating acceleration

propagators are given in the appendix. The calculation of v0

is accomplished by

v0 = Avn . (14)

The final step is to calculate ~vQ from v0, which is ac-

complished using the matrix Q mentioned earlier. Putting

everything together, we have

~vQ = QAB~vP , (15)

hence

R = QAB . (16)

The analysis presented here relies on formulae given in

the appendix, which in turn rely on assumptions about the

impulsive behaviour of the actuators. Apart from that, the only

assumptions are that the foot strikes the ground at a single

point, or an area small enough to be regarded as a single

point, and that the dynamics of shock propagation in a robot

leg can be modelled adequately as an impulse in a rigid-body

system.

A. Effect of Rotor Inertia

Equation (16) allows for general kinematic and inertia

parameters, as well as a general state of contact between other

limbs and the ground at the time of impact. However, it also

allows for actuators that generate an impulse in reaction to

a step change in joint velocity, thanks to the formulae in the

Appendix (Case 2). So it would be interesting to see what

effect this kind of actuator has on shock propagation up the leg.

To this end, Figure 5 shows two graphs that repeat the curve

of the ideal design in Figure 3, and add several more curves

in which either the ankle joint or the knee joint is actuated by

an electric motor having a rotor inertia of 10−4kgm2 which is

connected to the joint via a perfect reduction gear with a ratio

of 10, 15 or 20:1. A perfect gear is a rigid transmission, so

a step change in joint velocity implies a step change in rotor

velocity, which requires an impulse. Negative gear ratios were

also tried, but their effect differs only slightly from that of the

corresponding positive gear ratio.

The top graph shows that an actuator of this kind at the

ankle increases shock propagation at all ankle flexion angles

less than a threshold which is greater than 90◦; while the

bottom graph shows that an actuator at the knee increases

shock propagation at all angles above a threshold below 90◦,

but also reduces it slightly at angles below the threshold. Legs

with actuators at both joints were also investigated, and the

effect of the two actuators together is approximately the sum

of their individual effects.
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Fig. 5. Plots of shock propagation versus ankle angle for various values of
ankle (top graph) and knee (bottom graph) rotor inertia and gear ratio, for the
same leg design as in Figure 3 (r2 = 0.2m)

Graphs like these show us that the overall effect of actuators

that generate an impulse in response to a step change in joint

velocity is to increase shock propagation up the leg, although

the details vary with joint angle. This is a good argument in

favour of including at least a small amount of elasticity in the

transmission. It also shows that the mass distribution technique

described in this paper is best used in combination with other

shock-reduction measures.

VI. CONCLUSION

This paper has investigated how the mass distribution in

a robot’s leg affects shock propagation from the foot to the

torso. An example was given of an ‘ideal’ leg that isolates the

torso completely from all shocks arising from in-plane ground-

reaction forces at the foot; and a formula was presented for

a shock propagation matrix that can be used to quantify the

shock propagation in any given leg design. Both are believed

to be new. A few graphs were presented showing how shock

propagation varies with mass distribution, ankle flexion angle

and actuator behaviour during impact. One obvious use for

a shock propagation matrix would be design optimization

studies aimed at reducing the shock experienced in the torso.

The problem of shock reduction is likely to become more
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Fig. 6. Calculation of acceleration propagators (a) without and (b) with inertial
effect of the actuator.

important as legged robots reach higher speeds, and this paper

provides one more tool to help mitigate this problem.

APPENDIX

This appendix presents formulae for articulated-body in-

ertias and acceleration propagators under two different as-

sumptions about how the actuator behaves during impulsive

dynamics. The first is the assumption that the actuator does

not produce an impulse. This assumption is valid if the

actuator is a direct-drive motor, or if there is a series elastic

element between the actuator and the joint. The second is

the assumption that the actuator produces an inertial impulse

only. This assumption is valid if the actuator consists of a

motor and a highly efficient gear, such as a cable drive, that

can be regarded as perfect (i.e., no friction, compliance or

backlash). The formulae obtained under the first assumption

exist already in the literature, but those obtained under the

second assumption appear to be new. As mentioned in Section

III, ‘velocity’ means ‘step change in velocity’ in the text below.

All quantities are expressed in a common coordinate system

that can be chosen freely by the user.

If the robot has other limbs in contact with the environment

at the time of the impact then it is assumed that the impulse

does not alter the state of these other contacts. This assumption

allows existing contacts to be treated as equality constraints

for the purpose of calculating articulated-body inertias.

Case 1: no actuator impulse

Referring to Figure 6(a), an impulse ι1 acts on body 1,

which has inertia I1, giving it a velocity of v1 and causing

an impulse ι2 to be transmitted across the connecting joint to

body 2, giving it a velocity of v2. As body 2 might have other

bodies connected to it, it is characterized by its articulated-

body inertia, IA
2 . Although not strictly necessary, we shall

assume that the joint has only one degree of motion freedom,

and can therefore be characterized by a vector, s, such that

the relative velocity of the two bodies is a scalar multiple of

s. (For a revolute joint, s is the joint axis vector.) The relevant

equations are

ι1 − ι2 = I1v1 v2 = v1 + sα

ι2 = IA
2 v2 sTι2 = 0 .

(17)

The ones on the left are equations of motion, while those on

the right describe the constraint imposed by the joint and the

fact that constraint impulses do no work. These equations can

be solved for α as follows:

sTIA
2 (v1 + sα) = 0 ⇒ α = −

sTIA
2
v1

sTIA
2 s

, (18)

which implies

v2 = v1 −
ssTIA

2
v1

sTIA
2 s

. (19)

If we define the acceleration propagator, A, to be the matrix

that maps v1 to v2 according to v2 = Av1 then

A = 1−
ssTIA

2

sTIA
2 s

. (20)

(A bold 1 denotes an identity matrix.) Given A, the articu-

lated-body inertia of body 1 can be expressed as

IA
1 = I1 + IA

2 A . (21)

This can be verified by checking that ι1 = IA
1 v1.

Case 2: inertial actuator impulse

Figure 6(b) shows a modification of the situation in Figure

6(a) in which a motor is embedded in body 2 and drives the

joint via a gear with gear ratio n defined as follows: if the

rotor rotates by an angle θ about sr (the rotation axis of the

rotor) relative to body 2 then body 1 rotates by an angle θ/n
about s (the rotation axis of the joint) relative to body 2. The

relevant equations are now

ι1 − ι2 = I1v1 v2 = v1 + sα

ι2 − ιr = IA
2
v2 vr = v2 − nsrα

ιr = Irvr sTι2 = nsTr ιr .

(22)

The ones on the left are equations of motion, and those on the

right describe the motion freedoms allowed by the two joints

and the assumption that the gear is perfect (power in equals

power out). The minus sign in v2 − nsrα is there because

sα is the velocity of body 2 relative to body 1, which is the

opposite of the sense used to define n. These equations can

be solved for α as follows:

0 = sTι2 − nsT
r
ιr

= sTIA
2 v2 + (s− nsr)

Tιr

= sTIA
2
(v1 + sα) + (s− nsr)

TIrvr

= sTIA
2 (v1 + sα) + (s− nsr)

TIr(v1 + (s− nsr)α) ,

which implies

α = eTv1 (23)

where

eT = −
sTIA

2 + (s− nsr)
TIr

sTIA
2
s+ (s− nsr)TIr(s− nsr)

. (24)

The acceleration propagator matrix is then

A = 1+ seT . (25)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2020.2966395

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

Observe that this equation agrees with (20) when n = 1 and

sr = s, which is the case that corresponds to direct drive.

Given e and A, the formula for the articulated-body inertia of

body 1 is

IA
1 = I1 + Ir + IA

2 A+ Ir(s− nsr)e
T . (26)

This equation agrees with (21) when n = 1 and s = sr
if one takes into account that I1 in (21) would include the

rotor’s inertia if the joint were being directly driven, and would

therefore be equal to I1 + Ir in (26).
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