The Physics and Control of Balancing on a Point

Roy Featherstone

2015

Balancing is usually seen as a control problem, but it is also a *physical process*, and can be analysed as such.

 \circ

The simplest case:

A planar double pendulum with an actuated joint balancing on a sharp point in 2D (a knife edge in 3D).

Objectives:

- **1.** Maintain balance: $c_x = \dot{c}_x = 0$
- 2. Follow commanded motion: $q_2 = q_{2c}$ $\dot{q}_2 = \dot{q}_{2c}$

The control problem:

The controller must control 4 variables $(c_x, \dot{c}_x, q_2 \text{ and } \dot{q}_2)$, but has direct control of only one variable: τ_2

The control solution: (in principle)

If a control system succeeds in driving a variable x to zero, then a side-effect is to drive \dot{x} , \ddot{x} , etc. also to zero.

The control solution: (in principle)

So we seek a new set of state variables to use in place of q_1 , q_2 , \dot{q}_1 and \dot{q}_2 with the property that controlling one has the side-effect of controlling the other three.

Analysis:

Let *L* be the angular momentum of the robot about the support point. *L* has the special property that \dot{L} is the moment of gravity about the support point.

 q_2 c_x c_y L q_1

Analysis:

$$L = H_{11}\dot{q}_1 + H_{12}\dot{q}_2$$
$$\dot{L} = -mgc_x$$
$$\ddot{L} = -mg\dot{c}_x$$

Where H_{ij} are elements of the joint-space inertia matrix, m is the mass of the robot, and g is the acceleration of gravity.

Observe that L and \ddot{L} are *linear* functions of velocity.

 q_2 c_x c_y q_1

Analysis:

As L and \ddot{L} are linear functions of \dot{q}_1 and \dot{q}_2 , we can invert the equations and write

$$\dot{q}_2 = Y_1 L + Y_2 \ddot{L}$$

where Y_1 and Y_2 are functions of q_1 and q_2 only, and can be calculated easily via standard dynamics algorithms.

New Model of Balancing

The result is a new model of the balancing behaviour of the robot in which

- the state variables are \ddot{L} , \dot{L} , L and q_2 ,
- the input is \ddot{L} and the output is q_2 ,
- controlling q_2 has the side-effect of maintaining the robot's balance

New Model of Balancing

- the input is \overline{L} and the output is q_2 ,
- controlling q_2 has the side-effect of maintaining the robot's balance

New Model of Balancing

To control the robot we

- **1.** map q_1 , \dot{q}_1 , q_2 and \dot{q}_2 to \ddot{L} , \dot{L} , L and q_2 ,
- **2.** apply a *simple control law* to calculate \ddot{L} ,
- **3.** convert \ddot{L} to τ_2 or \ddot{q}_2 as required

Balance Controller

$$\ddot{L} = k_{dd}(\ddot{L} - \ddot{L}_{c}) + k_{d}(\dot{L} - \dot{L}_{c}) + k_{L}(L - L_{c}) + k_{q}(q_{2} - q_{2c})$$

the gains are simple functions of Y_1 , Y_2 and the user's choice of poles

Balance Controller

$$\ddot{L} = k_{dd}(\ddot{L} - \ddot{L}_{c}) + k_{d}(\dot{L} - \dot{L}_{c}) + k_{L}(L - L_{c}) + k_{q}(q_{2} - q_{2c})$$
optional

Balance Controller

$$\ddot{L} = k_{dd}(\ddot{L} - \ddot{L}_{c}) + k_{d}(\dot{L} - \dot{L}_{c}) + k_{L}(L - L_{c}) + k_{q}(q_{2} - q_{2c})$$

A Bit More Physics

where

- T_c is the robot's *natural time constant of toppling*, treating it as a single rigid body
- *G*_v is the *linear velocity gain* of the robot, which measures the degree to which motion of the actuated joint influences the horizontal motion of the CoM

A Bit More Physics

A robot's *velocity gain* expresses the instantaneous relationship between motion of the actuated joint(s) and the resulting motion of the centre of mass.

For the double pendulum,

$$G_{\rm v} = \frac{\Delta \dot{c}_x}{\Delta \dot{q}_2}$$

where both velocity changes are caused by an impulse at joint 2.

A Bit More Physics

How Well Does it Work?

20

How Well Does it Work?

21

Leaning in Anticipation

This behaviour can be implemented by changing the command input to the controller.

Leaning in Anticipation

23

The End

Further reading:

http://royfeatherstone.org/skippy/
http://royfeatherstone.org/publications.html