Roy Featherstone's Publications and Talks

Books

  1. R. Featherstone, 1987.  Publisher's web page.
    Robot Dynamics Algorithms.  Kluwer Academic Publishers, Boston/Dordrecht/Lancaster, 1987.
  2. R. Featherstone, 2008.  Publisher's web page.
    Rigid Body Dynamics Algorithms.  Springer, New York, 2008.

Patents

  1. R. Featherstone, 2018.  Link to Document.
    Linear Drive Mechanism of the Screw and Nut Type With Perfect Rolling Contact.  Japanese Patent no. JP6400860, issued to Fondazione Istituto Italiano di Tecnologia, Oct. 3 2018.
  2. R. Featherstone, 2019.  Link to Document.
    Linear Drive Mechanism of the Screw and Nut Type With Perfect Rolling Contact.  European Patent no. EP3295058(A1), issued to Fondazione Istituto Italiano di Tecnologia, May 22 2019.
  3. R. Featherstone, 2019.  Link to Document.
    Linear Drive Mechanism of the Screw and Nut Type With Perfect Rolling Contact.  United States Patent no. US10364871(B2), issued to Fondazione Istituto Italiano di Tecnologia, July 30 2019.

Journal Articles

  1. R. Featherstone, 1983a.  DOI.
    Calculation of Robot Joint Rates and Actuator Torques from End Effector Velocities and Applied Forces.  Mechanism and Machine Theory, vol. 18, no. 3, pp. 193–198, 1983.
  2. R. Featherstone, 1983b.  DOI.
    The Calculation of Robot Dynamics using Articulated-Body Inertias.  Int. J. Robotics Research, vol. 2, no. 1, pp. 13–30, 1983.
  3. R. Featherstone, 1983c.  DOI.
    Position and Velocity Transformations between Robot End Effector Coordinates and Joint Angles.  Int. J. Robotics Research, vol. 2, no. 2, pp. 35–45, 1983.
  4. R. Featherstone & O. Khatib, 1997.  DOIAbstract.
    Load Independence of the Dynamically Consistent Inverse of the Jacobian Matrix.  Int. J. Robotics Research, vol. 16, no. 2, pp. 168–170, 1997.
  5. R. Featherstone, 1999a.  DOIAbstract.
    A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics.  Part 1: Basic Algorithm.  Int. J. Robotics Research, vol. 18, no. 9, pp. 867–875, 1999.
  6. R. Featherstone, 1999b.  DOIAbstract.
    A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics.  Part 2: Trees, Loops and Accuracy.  Int. J. Robotics Research, vol. 18, no. 9, pp. 876–892, 1999.
  7. R. Featherstone & A. Fijany, 1999.  DOIAbstract.
    A Technique for Analysing Constrained Rigid-Body Systems, and its Application to the Constraint Force Algorithm.  IEEE Trans. Robotics & Automation, vol. 15, no. 6, pp. 1140–1144, 1999.
  8. R. Featherstone, 2001.  DOIAbstract.
    The Acceleration Vector of a Rigid Body.  Int. J. Robotics Research, vol. 20, no. 11, pp. 841–846.
  9. R. Featherstone, 2004a.  DOIAbstract.
    Modeling and Control of Contact Between Constrained Rigid Bodies.  IEEE Trans. Robotics & Automation, vol. 20, no. 1, pp. 82–92.
  10. R. Featherstone, 2004b.  DOIAbstractFull Text.
    An Empirical Study of the Joint Space Inertia Matrix.  Int. J. Robotics Research, vol. 23, no. 9, pp. 859–871.
  11. R. Featherstone, 2005.  DOIAbstractFull Text.
    Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees.  Int. J. Robotics Research, vol. 24, no. 6, pp. 487–500.
  12. Y. H. Teh & R. Featherstone, 2008.  DOIAbstractFull Text.
    An Architecture for Fast and Accurate Control of Shape Memory Alloy Actuators.  Int. J. Robotics Research, vol. 27, no. 5, pp. 595–611.
  13. R. Featherstone, 2010a.  DOIAbstractFull Text.
    Exploiting Sparsity in Operational-Space Dynamics.  Int. J. Robotics Research, vol. 29, no. 10, pp. 1353–1368.
  14. R. Featherstone, 2010b.  DOIAbstract.
    A Beginner's Guide to 6-D Vectors (Part 1).  IEEE Robotics & Automation Magazine, vol. 17, no. 3, pp. 83–94.
  15. R. Featherstone, 2010c.  DOIAbstract.
    A Beginner's Guide to 6-D Vectors (Part 2).  IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 88–99.
  16. A. Fijany & R. Featherstone, 2013.  DOIAbstract.
    A New Factorization of the Mass Matrix for Optimal Serial and Parallel Calculation of Multibody Dynamics.  Multibody System Dynamics, vol. 29, no. 2, pp. 169–187.
  17. K. D. Bhalerao, J. Critchley, D. Oetomo, et al., 2014.  DOIAbstract.
    Distributed Operational Space Formulation of Serial Manipulators.  J. Computational & Nonlinear Dynamics, vol. 9, no. 2, paper no. 021012.
  18. M. Azad & R. Featherstone, 2014.  DOIAbstract.
    A New Nonlinear Model of Contact Normal Force.  IEEE Trans. Robotics, vol. 30, no. 3, pp. 736–739.
  19. M. Azad & R. Featherstone, 2016.  DOIAbstract.
    Angular Momentum Based Balance Controller for an Under-actuated Planar Robot.  Autonomous Robots, vol. 40, no. 1, pp. 93–107.
  20. R. Featherstone, 2016.  DOIAbstractFull Text.
    Quantitative Measures of a Robot's Physical Ability to Balance.  Int. J. Robotics Research, vol. 35, no. 14, pp. 1681–1696.
  21. M. Focchi, A. del Prete, I. Havoutis, et al., 2017.  DOI.
    High-Slope Terrain Locomotion for Torque-Controlled Quadruped Robots.  Autonomous Robots, vol. 41, no. 1, pp. 259–272.
  22. R. Featherstone, 2017.  DOIAbstractFull Text.
    A Simple Model of Balancing in the Plane and a Simple Preview Balance Controller.  Int. J. Robotics Research, vol. 36, no. 13–14, pp. 1489–1507.
  23. B. R. P. Singh & R. Featherstone, 2020.  DOIFull Text.
    Mechanical Shock Propagation Reduction in Robot Legs.  IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1183–1190.
  24. J. K. Yim, B. R. P. Singh, E. K. Wang, et al., 2020.  DOIFull Text.
    Precision Robotic Leaping and Landing Using Stance-Phase Balance.  IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3422–3429.

A Selection of Other Publications

  1. R. Featherstone, S. Sonck & O. Khatib, 1998.  Abstract.
    A General Contact Model for Dynamically-Decoupled Force/Motion Control.  Experimental Robotics V, A. Casals & A. T. de Almeida (Eds.), pp. 128–139, Springer, Berlin, 1998.
  2. R. Featherstone & D. E. Orin, 2000.  DOIAbstractFull Text.
    Robot Dynamics: Equations and Algorithms.  IEEE  Int. Conf. Robotics & Automation, pp. 826–834, 2000.
  3. R. Featherstone, 2000.AbstractFull Text via Conference Proceedings.
    On the Limits to Invariance in the Twist/Wrench and Motor Representations of Motion and Force Vectors.  Ball 2000, Cambridge, UK, July 9–12, 2000.
  4. R. Featherstone, 2003.  AbstractFull Text (preprint).
    A Dynamic Model of Contact between a Robot and an Environment with Unknown Dynamics.  Robotics Research: The Tenth International Symposium, R. A. Jarvis & A. Zelinsky (Eds.), pp. 433–446, Springer, Berlin, 2003.
  5. R. Featherstone, 2006.  DOIAbstractFull TextSlides.
    Plücker Basis Vectors.  IEEE  Int. Conf. Robotics & Automation, pp. 1892–1897.
  6. R. Featherstone, 2007.  Article.
    Robot Dynamics.  Scholarpedia, 2(10):3829.
  7. R. Featherstone & D. E. Orin, 2008.  DOIAbstract.
    Dynamics.  Springer Handbook of Robotics, B. Siciliano & O. Khatib (editors), Springer, Berlin, chapter 2, pp. 35–65, 2008.
  8. P. Wensing, R. Featherstone & D. E. Orin, 2012.  DOIAbstract.
    A Reduced-Order Recursive Algorithm for the Computation of the Operational-Space Inertia Matrix.  IEEE  Int. Conf. Robotics & Automation, pp. 4911–4917.
  9. M. Azad & R. Featherstone 2013.  DOIAbstract.
    Balancing and Hopping Motion of a Planar Hopper with One Actuator.  IEEE Int. Conf. Robotics & Automation, pp. 2027–2032.
  10. M. Azad & R. Featherstone 2014.  DOIAbstract.
    Balancing Control Algorithm for a 3D Under-actuated Robot.  IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, Illinois, Sept. 14–18, pp. 3233–3238, 2014.
  11. R. Featherstone 2015a.  DOIAbstractFull TextSlidesPoster.
    Quantitative Measures of a Robot's Ability to Balance.  Robotics: Science and Systems, Rome, Italy, July 13–17, paper 26, 2015.
  12. R. Featherstone 2015b.  AbstractFull TextSlidesMovie.
    A New Simple Model of Balancing in the Plane.  Int. Symp. Robotics Research, Sestri Levante, Italy, Sept. 12–15, 2015.
  13. R. Featherstone & D. E. Orin, 2016.  DOIAbstract.
    Dynamics.  Springer Handbook of Robotics (2nd Ed.), B. Siciliano & O. Khatib (editors), Springer, Berlin, chapter 3, pp. 37–66, 2016.
  14. R. Featherstone, 2019.  DOI.
    The Physics and Control of Balancing on a Point in the Plane.  Biomechanics of Anthropomorphic Systems, G. Venture, J.-P. Laumond & B. Watier (editors), Springer, Berlin, pp. 211–234, 2019.

Papers in the Pipeline

  1. A. E. Gkikakis & R. Featherstone.  AbstractFull Text.
    Skippy: Mechanism and Behaviour Co-design of an Athletic Monopod.  submitted to Robotica, Dec 2019.

Talks

  1. The Condition Number of the Joint-Space Inertia Matrix
  2. High Performance Force Control for Shape Memory Alloy (SMA) Actuators
  3. Branch-Induced Sparsity in Rigid-Body Dynamics
  4. Is Walking Just a Boring Dance?  2010.  (1 hour)  AbstractSlidesSlides X4.
  5. Simulating Mobile Robots Using Simulink.  2011.  (1 hour)  SlidesSlides X4.
  6. Achieving High Performance from SMA Actuators.  2011.  (30 min)  AbstractSlidesSlides X4.  Presented at IEEE ICRA 2011 Workshop on Biologically-Inspired Actuation.
  7. The Physics and Control of Balancing on a Point.  2015.  (1 hour)  AbstractSlidesSlides X8Fork Movie (6.7MB).  Lean Movie (1.5MB).
  8. Skippy: Reaching for the Performance Envelope.  2016.  (1 hour)  AbstractSlidesMovie.  Presented at Workshop on Dynamic Locomotion and Manipulation, July 13–15, ETH Zürich.
  9. Balancing Made Simple.  2018.  (30 minutes)  AbstractSlidesMovie (7MB).  Presented at IROS 2018 Workshop on Modeling and Control of Dynamic Legged Locomotion: Insights from Template (Simplified) Models, October 1, Madrid, Spain.

Page last modified:  March 2020
Author: Roy Featherstone