Books

  1. R. Featherstone, 1987.  Publisher's web page.
    Robot Dynamics Algorithms.  Kluwer Academic Publishers, Boston/Dordrecht/Lancaster, 1987.
  2. R. Featherstone, 2008.  Publisher's web page.
    Rigid Body Dynamics Algorithms.  Springer, New York, 2008.

Journal Articles

  1. R. Featherstone, 1983a.  DOI.
    Calculation of Robot Joint Rates and Actuator Torques from End Effector Velocities and Applied Forces.  Mechanism and Machine Theory, vol. 18, no. 3, pp. 193–198, 1983.
  2. R. Featherstone, 1983b.  DOI.
    The Calculation of Robot Dynamics using Articulated-Body Inertias.  Int. J. Robotics Research, vol. 2, no. 1, pp. 13–30, 1983.
  3. R. Featherstone, 1983c.  DOI.
    Position and Velocity Transformations between Robot End Effector Coordinates and Joint Angles.  Int. J. Robotics Research, vol. 2, no. 2, pp. 35–45, 1983.
  4. R. Featherstone & O. Khatib, 1997.  DOIAbstract.
    Load Independence of the Dynamically Consistent Inverse of the Jacobian Matrix.  Int. J. Robotics Research, vol. 16, no. 2, pp. 168–170, 1997.
  5. R. Featherstone, 1999a.  DOIAbstract.
    A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics.  Part 1: Basic Algorithm.  Int. J. Robotics Research, vol. 18, no. 9, pp. 867–875, 1999.
  6. R. Featherstone, 1999b.  DOIAbstract.
    A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics.  Part 2: Trees, Loops and Accuracy.  Int. J. Robotics Research, vol. 18, no. 9, pp. 876–892, 1999.
  7. R. Featherstone & A. Fijany, 1999.  DOIAbstract.
    A Technique for Analysing Constrained Rigid-Body Systems, and its Application to the Constraint Force Algorithm.  IEEE Trans. Robotics & Automation, vol. 15, no. 6, pp. 1140–1144, 1999.
  8. R. Featherstone, 2001.  DOIAbstract.
    The Acceleration Vector of a Rigid Body.  Int. J. Robotics Research, vol. 20, no. 11, pp. 841–846.
  9. R. Featherstone, 2004a.  DOIAbstract.
    Modeling and Control of Contact Between Constrained Rigid Bodies.  IEEE Trans. Robotics & Automation, vol. 20, no. 1, pp. 82–92.
  10. R. Featherstone, 2004b.  DOIAbstractFull Text.
    An Empirical Study of the Joint Space Inertia Matrix.  Int. J. Robotics Research, vol. 23, no. 9, pp. 859–871.
  11. R. Featherstone, 2005.  DOIAbstractFull Text.
    Efficient Factorization of the Joint Space Inertia Matrix for Branched Kinematic Trees.  Int. J. Robotics Research, vol. 24, no. 6, pp. 487–500.
  12. Y. H. Teh & R. Featherstone, 2008.  DOIAbstractFull Text.
    An Architecture for Fast and Accurate Control of Shape Memory Alloy Actuators.  Int. J. Robotics Research, vol. 27, no. 5, pp. 595–611.
  13. R. Featherstone, 2010a.  DOIAbstractFull Text.
    Exploiting Sparsity in Operational-Space Dynamics.  Int. J. Robotics Research, vol. 29, no. 10, pp. 1353–1368.
  14. R. Featherstone, 2010b.  DOIAbstract.
    A Beginner's Guide to 6-D Vectors (Part 1).  IEEE Robotics & Automation Magazine, vol. 17, no. 3, pp. 83–94.
  15. R. Featherstone, 2010c.  DOIAbstract.
    A Beginner's Guide to 6-D Vectors (Part 2).  IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 88–99.
  16. A. Fijany & R. Featherstone, 2013.  DOIAbstract.
    A New Factorization of the Mass Matrix for Optimal Serial and Parallel Calculation of Multibody Dynamics.  Multibody System Dynamics, vol. 29, no. 2, pp. 169–187.
  17. K. D. Bhalerao et al., 2014.  DOIAbstract.
    Distributed Operational Space Formulation of Serial Manipulators.  J. Computational & Nonlinear Dynamics, vol. 9, no. 2, paper no. 021012.
  18. M. Azad & R. Featherstone 2014.  DOIAbstract.
    A New Nonlinear Model of Contact Normal Force.  IEEE Trans. Robotics, vol. 30, no. 3, pp. 736–739.
  19. M. Azad & R. Featherstone 2016.  DOIAbstract.
    Angular Momentum Based Balance Controller for an Under-actuated Planar Robot.  Autonomous Robots, vol. 40, no. 1, pp. 93–107.
  20. R. Featherstone 2016.  DOIAbstractFull Text.
    Quantitative Measures of a Robot's Physical Ability to Balance.  Int. J. Robotics Research, vol. 35, no. 14, pp. 1681–1696.
  21. M. Focchi et al., 2017.  DOI.
    High-Slope Terrain Locomotion for Torque-Controlled Quadruped Robots.  Autonomous Robots, vol. 41, no. 1, pp. 259–272.

A Selection of Other Publications

[See also the SMA and Skippy project publication lists and my complete publications list.]
  1. R. Featherstone, S. Sonck & O. Khatib, 1998.  Abstract.
    A General Contact Model for Dynamically-Decoupled Force/Motion Control.  Experimental Robotics V, A. Casals & A. T. de Almeida (Eds.), pp. 128–139, Springer, Berlin, 1998.
  2. R. Featherstone & D. E. Orin, 2000.  DOIAbstractFull Text.
    Robot Dynamics: Equations and Algorithms.  IEEE  Int. Conf. Robotics & Automation, pp. 826–834, 2000.
  3. R. Featherstone, 2000.AbstractFull Text via Conference Proceedings.
    On the Limits to Invariance in the Twist/Wrench and Motor Representations of Motion and Force Vectors.  Ball 2000, Cambridge, UK, July 9–12, 2000.
  4. R. Featherstone, 2003.  AbstractFull Text (preprint).
    A Dynamic Model of Contact between a Robot and an Environment with Unknown Dynamics.  Robotics Research: The Tenth International Symposium, R. A. Jarvis & A. Zelinsky (Eds.), pp. 433–446, Springer, Berlin, 2003.
  5. R. Featherstone, 2006.  DOIAbstractFull TextSlides.
    Plücker Basis Vectors.  IEEE  Int. Conf. Robotics & Automation, pp. 1892–1897.
  6. R. Featherstone, 2007.  Article.
    Robot Dynamics.  Scholarpedia, 2(10):3829.
  7. R. Featherstone & D. E. Orin, 2008.  DOIAbstract.
    Dynamics.  Springer Handbook of Robotics, B. Siciliano & O. Khatib (editors), Springer, Berlin, chapter 2, pp. 35–65, 2008.
  8. P. Wensing, R. Featherstone & D. E. Orin, 2012.  DOIAbstract.
    A Reduced-Order Recursive Algorithm for the Computation of the Operational-Space Inertia Matrix.  IEEE  Int. Conf. Robotics & Automation, pp. 4911–4917.
  9. M. Azad & R. Featherstone 2013.  DOIAbstract.
    Balancing and Hopping Motion of a Planar Hopper with One Actuator.  IEEE Int. Conf. Robotics & Automation, pp. 2027–2032.
  10. M. Azad & R. Featherstone 2014.  DOIAbstract.
    Balancing Control Algorithm for a 3D Under-actuated Robot.  IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3233–3238, 2014.
  11. R. Featherstone 2015a.  DOIAbstractFull TextSlidesPoster.
    Quantitative Measures of a Robot's Ability to Balance.  Robotics: Science and Systems, Rome, Italy, July 13–17, paper 26, 2015.
  12. R. Featherstone 2015b.  AbstractFull TextSlidesMovie.
    A New Simple Model of Balancing in the Plane.  Int. Symp. Robotics Research, Sestri Levante, Italy, Sept. 12–15, 2015.
  13. R. Featherstone & D. E. Orin, 2016.  DOIAbstract.
    Dynamics.  Springer Handbook of Robotics (2nd Ed.), B. Siciliano & O. Khatib (editors), Springer, Berlin, chapter 3, pp. 37–66, 2016.

Papers in the Pipeline

  1. R. Featherstone 2017.
    A Simple Model of Balancing in the Plane and a Simple Preview Balance Controller.  To appear in Int. J. Robotics ResearchAbstractFull Text.

Talks

  1. The Condition Number of the Joint-Space Inertia Matrix
  2. High Performance Force Control for Shape Memory Alloy (SMA) Actuators
  3. Branch-Induced Sparsity in Rigid-Body Dynamics
  4. Is Walking Just a Boring Dance?  2010.  (1 hour)  AbstractSlidesSlides X4.
  5. Simulating Mobile Robots Using Simulink.  2011.  (1 hour)  SlidesSlides X4.
  6. Achieving High Performance from SMA Actuators.  2011.  (30 min)  AbstractSlidesSlides X4.  Presented at IEEE ICRA 2011 Workshop on Biologically-Inspired Actuation.
  7. The Physics and Control of Balancing on a Point.  2015.  (1 hour)  AbstractSlidesSlides X8Movie (6.7MB).
  8. Skippy: Reaching for the Performance Envelope.  2016.  (1 hour)  AbstractSlidesMovie.  Presented at Workshop on Dynamic Locomotion and Manipulation, July 13–15, ETH Zürich.

Page last modified:  March 2017
Author: Roy Featherstone